The Francis 1 — 2 — 3 Theorem. Start with a positive integer r and produce an N-digit number J
such that, beginning with r in the “ones” position, the other digits in J increase in increments of 1 as they
fill higher orders of “tens” positions in J (e.g. r =3, N = 5, then J = 76, 543).

Find the sum of J and its reverse, J (e.g. J = 123, then J = 321). Now also find the sum of the digits
in J (or J).

Statement: The quotient of these two sums does not vary under any choice for v, and depends only
on the choice for N

Proof. The integers J and J can be described in a more general form as series:
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and the sum of the digits in J (or j) can also be put in series form:
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The sum J + J can be written
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so the quotient of the two sums
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This shows that the quotient, depends only on N, which concludes the
proof.



