

1 of 30

Ensuring a Rigorous Curriculum:
Practices and Goals

Allen B. Tucker
Bowdoin College

www.bowdoin.edu/~allen
April 12, 2002

2 of 30

Goals of an Undergraduate Program

To prepare graduates for the computing profession and for
postgraduate study.

In the profession, they 1) develop reliable software and
hardware, and 2) learn new methods and technologies.

How well do (we and) our graduates do?

Often not well:

 Only 9% of all IT projects are delivered on
time and on budget [

IEEE Software

; April 1998].

And occasionally very poorly:

In 1996, the Ariane 5
launcher crashed on take-off, at a cost of $500 million, due
to insufficient software specifications [Meyer 1997].

... so maybe something’s missing.

3 of 30

Practical Need for Rigor in the Curriculum

In practice, the use of formal methods leads to:

- Cost-effective software designs [King 2000]
- Code correctness
- Code readability and efficiency

Results of a Controlled Experiment

[Sobol 2002]
- Elevator scheduling problem
- formal methods (6 teams) vs

 traditional design (13 teams)
- all 6 formal designs were correct for all test data;

 6 out of 13 traditional designs were correct
 - formal designs’ code was more compact

- formal designs’ code was more readable

4 of 30

Computer science is a rigorous discipline:

E.g., [ACM/IEEE 2001, section 9.1.1 Mathematical Rigor]:

“

Mathematics techniques and formal mathematical rea-
soning are integral to most areas of computer science

...

...

Given the pervasive role of mathematics within com-
puter science, the CS curriculum must include mathemati-
cal concepts early and often.”

“Rigor”

= the careful, thorough, systematic, and precise
process of developing correct, efficient, and robust solu-
tions to computational problems.

5 of 30

How can we ensure rigor in the CS curriculum?

A

rigorous CS curriculum

 meets the following goals:

Goal 1

: ensure that students can

use precise mathematical
ideas and notations

in all subject areas.

Goal 2

: ensure that students can

use formal methods

in all

software designs

.

Goal 3

: ensure that students can

demonstrate the correct-
ness of their solutions to problems

in all subject areas.

6 of 30

How Can a Curriculum Meet these Goals?

Introduce rigor early
(give the

discrete mathematics course equal status with
 CS1

, and integrate its principles into CS1)

Use rigor in CS2
(confirm that

principles of mathematical logic are integral
 to good programming

)

Continue using rigor in every core and elective course
(

integrate the theory

with the practice

)

Here are some examples...

7 of 30

Example 1: The CS1 Course - introduce rigor early

... the idea that logic is related to the implementation of programs.

boolean search (Argument x, List L) {
 int i = 1;
 while ()
 i = i + 1;
 //
 return found(x);
}

... the idea that correct programs are related to their specifications.

boolean search (Argument x, List L) {
 pre:

 int i = 1;
 while ()
 i = i + 1;
 //
 return found(x);
 post:

}

found x()¬ exhausted L()¬∧

found x() exhausted L()∨

L e1 e2 … en, , ,{ }= n 0≥∧

found x()¬ exhausted L()¬∧

found x() exhausted L()∨

i∃ 1 … n, ,{ }∈ : x ei= found x()∧ found x()¬∨

8 of 30

Example 2: The CS2 Course - integrate rigor

Principles:

- Data structure and class design: use formal specifications
- Large program design: use formal specifications
- Implementation: verify code against specifications

Design by contract

 [Meyer 1997]:

The relation between a software module and its clients is a

formal agreement

, each with rights and obligations that
- are explicitly stated (via

assertions

and

invariants

), and
- are supported by the language (e.g., JJ or Java 1.4).

Assertions can be written only from fluency with logic, so:
-

Discrete math must be a prerequisite

9 of 30

E.g., specifying part of a Tic-Tac-Toe game:

The game is over if either the player has won or the board has no open cells.

The player has won if the board contains three instances of the player in a
row, a column, or a diagonal.

GameOver: Grid Char B→×

GameOver board player,() =

 true if Winner board player,() i j, 0 1 2, ,{ }: boardij OFF≠∈∀∨

 false otherwise

Winner: Grid Char× B→

Winner board player,() =

 (i∃ 0 1 2, ,{ }∈ :

 j 0 1 2, ,{ }: boardij∈∀ player j 0 1 2, ,{ }: board ji∈∀ player=∨=()) ∨

 board00 board11 board22 player= = = ∨

 board20 board11 board02 player= = =

10 of 30

... and writing the code:
GameOver Grid board Char player,() ←

 if Winner board player,()

 true

 else for i 0← to 2

 if boardi0 OFF boardi1∨ OFF= = boardi2∨ OFF=

 false

 true

Winner Grid board Char player,() ←

 for i 0← to 2

 if boardi0 boardi1 boardi2 player= = =

 true

 if board0i board1i board2i player= = =

 true

 if board00 board11 board22 player= = =() board20 board11 board02 player= = =()∨

 true

 false

11 of 30

... which would have looked like this in Java:
public boolean GameOver(Grid board, char player) {
 if (Winner(board, player))
 return true;
 for (int i=0; i<3; i++)
 if (board.get(i,0)==Cell.OFF ||
 board.get(i,1)==Cell.OFF || board.get(i,2)==Cell.OFF)
 return false;
 return true;
}
public boolean Winner(Grid board, char player) {
 for (int i=0; i<3; i++) {
 if (board.get(i,0)==board.get(i,1) &&
 board.get(i,1)==board.get(i,2) && board.get(i,0)==player)
 return true;
 if (board.get(0,i)==board.get(1,i) &&
 board.get(1,i)==board.get(2,i) && board.get(0,i)==player)
 return true;
 }
 if (board.get(0,0)==board.get(1,1) &&
 board.get(1,1)==board.get(2,2) && board.get(0,0)==player)
 return true;
 if (board.get(2,0)==board.get(1,1) &&
 board.get(1,1)==board.get(0,2) && board.get(2,0)==player)
 return true;
}

12 of 30

Example 3: The Programming Languages Course
[Tucker 2002]

Goals:
1. to teach principles of language design

(Syntax, Type Systems, Semantics)

2. To introduce different paradigms
(Functional, Object-Oriented, Logic)

These can be achieved by
• A mathematical treatment of the principles (BNF,

Denotational Semantics), and

• Coordinated laboratory experiences (using an
experimental language “Jay”)

Students need to be fluent with functions, sets, and logic:
- So discrete math must be a prerequisite

13 of 30

Denotational Semantics of “Jay” Assignments

• Based on a formal abstract syntax,
Assignment = Variable target; Expression source
Expression = Value | Variable | Binary
Value = int intValue | boolean boolValue
Variable = String v
Binary = Operator op; Expression term1, term2
Operator = + | - | * | /

• a state ,

• and a state-transforming (partial) function:

σ v1 val1,〈 〉 v2 val2,〈 〉 … vn valn,〈 〉, , ,{ }=

M : Expression State× Value→

M : Assignment State× State→

14 of 30

The meaning of Assignment and Expression

Note: creates a new state by replacing every pair

 in for which by .

So if state then

M Assignment a, State σ() σ U a.target, M a.source, σ()〈 〉{ }=

M Expression e State σ,()

 e= if e is a Value

 σ e()= if e is a Variable

 Apply e.op M e.term1 σ,() M e.term2 σ,(), ,() if e is a Binary=

Apply Operator op, Value v1, Value v2()

v1 v2+= if op = +

v1 v2×= if op = *

σ1Uσ2 σ

v val1,〈 〉 σ1 v σ2∈ v val2,〈 〉

σ x 1,〈 〉 y 5,〈 〉,{ }= σ U x 11,〈 〉{ } x 11,〈 〉 y 5,〈 〉,{ }=

15 of 30

For example, if , the meaning of
the Assignment x=2*y+1 is:

σ x 1,〈 〉 y 5,〈 〉,{ }=

M x=2*y+1, σ() σ U a.target, M a.source, σ()〈 〉{ }=

σ U x, M 2*y+1, σ()〈 〉{ }=

σ U x, Apply +, M 2*y, σ() M 1 σ,(),()〈 〉{ }=

σ U x, Apply +, Apply * M 2 σ,() M y σ,(), ,() M 1 σ,(),()〈 〉{ }=

…= = x 1,〈 〉 y 5,〈 〉,{ } U x, 11〈 〉{ } x 11,〈 〉 y 5,〈 〉,{ }=

16 of 30

 Abstract syntax is modeled using Java classes

So for the Assignment a = “x = 2*y+1” :
 a.target = Variable x

 a.source = Expression e = 2*y+1

 e.op = + e.term1 = Binary 2*y e.term2 = Value 1

 ...

Operator

Assignment

Variable
x

1
ValueBinary

Operator

* 2 y
Value Variable

a

Binary

+

e

17 of 30

Laboratory Opportunities

• abstract syntax of Jay => Java classes
• Semantic functions of Jay => Java methods
• OO programming => integrating semantic

functions into abstract classes
• Functional programming => Scheme

implementation of semantic functions
• Logic programming => Prolog

implementation of semantic functions

Students master each paradigm by revisiting
the same problem: formal semantics of “Jay.”

18 of 30

In the Java Implementation of Jay semantics:

• the state of a program is a Hashtable.
• the expression , denoting the value of

variable v in state , uses sigma.get(v)
• implementing functions M follow the math:

Value M (Expression e, State sigma) {
 if (e instanceof Value)
 return (Value)e;
 if (e instanceof Variable)
 return (Value)(sigma.get((Variable)e));
 if (e instanceof Binary)
 return apply(((Binary)e).op,
 M(((Binary)e).term1, sigma),
 M(((Binary)e).term2, sigma));
 return null;
}

σ

σ v()

σ

19 of 30

The Functional Paradigm

A Jay state is naturally modeled in Scheme as
a list of pairs.

E.g., is modeled by ((x 1) (y 5))

The state access function get is:
(define (get id sigma)
 (if (equal? id (caar sigma))) (cadar sigma)
 (get id (cdr sigma))
))

The list representation for expressions is:
;;; (value number)
;;; (variable ident)
;;; (operator term1 term2)
;;; where operator is one of: plus times

x 1,〈 〉 y 5,〈 〉,{ }

20 of 30

The meaning of a Jay abstract expression is:
(define (m-expression expr sigma)
 (case (car expr)
 ((value) (cadr expr))
 ((variable) (get (cadr expr) sigma)
 (else (apply (car expr) (cadr expr)
 (caddr expr) sigma))
))

The Scheme function apply is:
(define (apply op term1 term2 sigma)
 (case op
 ((plus) (+ (m-expression term1 sigma)
 (m-expression term2 sigma)))
 ((times) (* (m-expression term1 sigma)
 (m-expression term2 sigma)))
 (else #f)
))

21 of 30

The Logic Paradigm (Prolog)

The Jay state is represented by:
[[x,1], [y,5]]

The state access function get is recursive:
/* get(var, inState, outValue) */
get(Var, [[Var, Val] | _], Val).
get(Var, [_ | Rest], Val) :- get(Var, Rest, Val).

The meaning of a Jay Expression uses the
following representational convention:

value(number)
variable(ident)
operator(term1, term2)

where operator is one of: plus times

x 1,〈 〉 y 5,〈 〉,{ }

22 of 30

The meaning of a Jay Expression in Prolog:

/* mexpression(expr, state, val) */
mexpression(value(Val), _, Val).
mexpression(variable(Var), State, Val) :-
 get(Var, State, Val).
mexpression(plus(Expr1, Expr2), State, Val) :-
 mexpression(Expr1, State, Val1),
 mexpression(Expr2, State, Val2),
 Val is Val1 + Val2.

23 of 30

Weaknesses of Current Programming Languages

1. incomplete character set (the “ASCII bottleneck”) e.g., && for logical con-
junction, == for equality

2. linear style of expression e.g., board.get(i,j) for boardij

3. absence of mathematical notation e.g., no quantifiers

4. absence of syntactic and semantic uniformity e.g., == and equals both
denote “equality.”

5. limited and overspecified control structures e.g., forcing the use of for
statements to ask “Is there any row, column, or diagonal on the board that con-
tains three instances of player?”

6. nonsupport for formal verification e.g., forcing the use of comments to spec-
ify pre- and post-conditions (Java 1.4 now supports these, finally!!!).

7. absence of integration between code and commentary e.g., there’s no verifi-
able semantic relation between the comments and the program itself.

24 of 30

A Rigorous Programming Language will:

1. Break the “ASCII Bottleneck”

2. Support a “publication language”

3. Support a rich variety of expressions

4. Enforce a more literate style

5. Unite comments, specifications, and code

25 of 30

Breaking the ASCII bottleneck

26 of 30

Defining a Publication Language [CACM 1969 p 562]

procedure Ising(n,x,t,S); integer n, x, t; integer array S;

comment Ising generates n-sequences of zeros and ones where

 and are given.

...
begin
 integer k; integer array L, M[1 :];
 ...
end Ising

S1 … Sn, ,()

x Si
i 1=

n

∑= t Si 1+ Si–
i 1=

n 1–

∑=

t 2 1+÷

27 of 30

Enforcing a More Literate Coding Style

Winner Grid board Char player,() ←

 for i 0← to 2

 if boardi0 boardi1 boardi2 player= = =

 true

 if board0i board1i board2i player= = =

 true

 if board00 board11 board22 player= = =() board20 board11 board02 player= = =()∨

 true

 false

28 of 30

Uniting Comments, Specifications, and Code

 The game is over if either the player has won or the board has no open cells.

GameOver: Grid Char B→×

GameOver board player,() =

 true if Winner board player,() i j, 0 1 2, ,{ }: boardij OFF≠∈∀∨

 false otherwise

GameOver Grid board Char player,() ←

 if Winner board player,()

 true

 else for i 0← to 2

 if boardi0 OFF boardi1∨ OFF= = boardi2∨ OFF=

 false

 true

29 of 30

An Agenda for Curriculum and Language Development

Experiment outside the “current textbook” box
Create new teaching materials that incorporate and inte-
grate mathematical ideas

Collaborate with others who are doing the same
Get NSF and local support for curriculum development

Contribute to language design research
Extend the alphabet and the primitive functions
View programming as authorship rather than just coding

Continue to view mathematical thinking as a fundamental
paradigm for computer science

30 of 30

References

[ACM/IEEE 2001] ACM/IEEE Joint Curriclum Task Force, Computing Curric-
ula 2001, www.acm.org/sigcse/

[King 2000] King, S. et al. “Is Proof More Cost-Effective Than Testing?”
IEEE Trans on Software Engineering 26, 8 (August 2000) 675-685.

[Meyer 1997] Meyer, B., Object-Oriented Software Construction 2e, Prentice-
Hall, 1997.

[Naur 1962] Naur, P (ed), “Revised Report on the Algorithmic Language Algol
60,” IFIP Press 1962.

[Sobol 2002] Sobel, A. and M. Clarkson. “Formal Methods Application: An
Empirical Tale of Software Development. IEEE Trans on Software Engineer-
ing 28, 3 (March 2002) 308-320.

[Tucker 2002] Tucker, A. and R. Noonan, Programming Languages: Principles
and Paradigms, McGraw-Hill, 411 pages. www.bowdoin.edu/~allen/pl/

[Walker 1996] Walker, H. and M. Schneider, “Revised Model Curriculum for a
Liberal Arts Degree in Computer Science,” Communications of the ACM
39,12 December 1996.

