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Goals of an Undergraduate Program

 

To prepare graduates for the computing profession and for 
postgraduate study.  

In the profession, they 1) develop reliable software and 
hardware, and 2) learn new methods and technologies.

 

How well do (we and) our graduates do?

 

Often not well:

 

 Only 9% of all IT projects are delivered on 
time and on budget [

 

IEEE Software

 

; April 1998].

 

And occasionally very poorly: 

 

In 1996, the Ariane 5 
launcher crashed on take-off, at a cost of $500 million, due 
to insufficient software specifications [Meyer 1997].

 

... so maybe something’s missing.
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Practical Need for Rigor in the Curriculum

In practice, the use of formal methods leads to:

 

- Cost-effective software designs [King 2000]
- Code correctness
- Code readability and efficiency

 

Results of a Controlled Experiment 

 

[Sobol 2002]
- Elevator scheduling problem
- formal methods (6 teams) vs 

     traditional design (13 teams)
- all 6 formal designs were correct for all test data; 

          6 out of 13 traditional designs were correct
 - formal designs’ code was more compact

- formal designs’ code was more readable
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Computer science is a rigorous discipline:

 

E.g., [ACM/IEEE 2001, section 9.1.1 Mathematical Rigor]:

 

 

 

“

 

Mathematics techniques and formal mathematical rea-
soning are integral to most areas of computer science

 

... 

... 

 

Given the pervasive role of mathematics within com-
puter science, the CS curriculum must include mathemati-
cal concepts early and often.”

“Rigor” 

 

= the careful, thorough, systematic, and precise 
process of developing correct, efficient, and robust solu-
tions to computational problems.
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How can we ensure rigor in the CS curriculum?

 

A 

 

rigorous CS curriculum

 

 meets the following goals:

 

Goal 1

 

: ensure that students can 

 

use precise mathematical 
ideas and notations 

 

in all subject areas.

 

Goal 2

 

: ensure  that students can 

 

use formal methods 

 

in all 

 

software designs

 

.

 

Goal 3

 

: ensure that students can 

 

demonstrate the correct-
ness of their solutions to problems 

 

in all subject areas.  
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How Can a Curriculum Meet these Goals?

 

Introduce rigor early 
(give the 

 

discrete mathematics course equal status with 
    CS1

 

, and integrate its principles into CS1)

Use rigor in CS2 
(confirm that 

 

principles of mathematical logic are integral   
    to good programming

 

)

Continue using rigor in every core and elective course 
(

 

integrate the theory

 

 

 

with the practice

 

)

 

Here are some examples...



 

7 of 30

 

Example 1: The CS1 Course - introduce rigor early

 

... the idea that logic is related to the implementation of programs.

 

boolean search (Argument x, List L) {
   int i = 1;
   while ( )
     i = i + 1;
   // 
   return found(x);
}

 

... the idea that correct programs are related to their specifications.

 

boolean search (Argument x, List L) {
   pre: 

   int i = 1;
   while ( )
     i = i + 1;
   // 
   return found(x);
   post: 

}

found x( )¬ exhausted L( )¬∧

found x( ) exhausted L( )∨

L e1 e2 … en, , ,{ }= n 0≥∧

found x( )¬ exhausted L( )¬∧

found x( ) exhausted L( )∨

i∃ 1 … n, ,{ }∈ : x ei= found x( )∧ found x( )¬∨



 

8 of 30

 

Example 2: The CS2 Course - integrate rigor

Principles:

 

- Data structure and class design: use formal specifications
- Large program design: use formal specifications
- Implementation: verify code against specifications

 

 

Design by contract

 

 [Meyer 1997]:

The relation between a software module and its clients is a 

 

formal agreement

 

, each with rights and obligations that  
- are explicitly stated (via 

 

assertions 

 

and 

 

invariants

 

), and 
- are supported by the language (e.g., JJ or Java 1.4).

Assertions can be written only from fluency with logic, so:
- 

 

Discrete math must be a prerequisite
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E.g., specifying part of a Tic-Tac-Toe game: 

 

      

 

The game is over if either the player has won or the board has no open cells.

     

The player has won if the board contains three instances of the player in a 
row, a column, or a diagonal.

 

      

GameOver: Grid Char B→×

GameOver board player,( )  =

          true if Winner board player,( ) i j, 0 1 2, ,{ }: boardij OFF≠∈∀∨

         false         otherwise

Winner: Grid Char× B→

Winner board player,( )  =

            ( i∃ 0 1 2, ,{ }∈ : 

                    j 0 1 2, ,{ }: boardij∈∀ player j 0 1 2, ,{ }: board ji∈∀ player=∨=( ))  ∨  

          board00 board11 board22 player= = =  ∨

          board20 board11 board02 player= = =  
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... and writing the code:
GameOver Grid  board Char  player,( )  ←

     if Winner board player,( )

         true

     else for i 0←  to 2 

                if boardi0 OFF boardi1∨ OFF= = boardi2∨ OFF=

                   false

     true

Winner Grid  board Char  player,( )  ←

       for i 0←  to 2 

           if boardi0 boardi1 boardi2 player= = =

               true

           if board0i board1i board2i player= = =

               true

        if board00 board11 board22 player= = =( ) board20 board11 board02 player= = =( )∨

           true

        false
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... which would have looked like this in Java:
public boolean GameOver(Grid board, char player) {
  if (Winner(board, player)) 
    return true;
  for (int i=0; i<3; i++) 
    if (board.get(i,0)==Cell.OFF || 
        board.get(i,1)==Cell.OFF || board.get(i,2)==Cell.OFF)
      return false;
  return true;
}
public boolean Winner(Grid board, char player) {
  for (int i=0; i<3; i++) {
    if (board.get(i,0)==board.get(i,1) && 
        board.get(i,1)==board.get(i,2) && board.get(i,0)==player)
      return true;
    if (board.get(0,i)==board.get(1,i) && 
        board.get(1,i)==board.get(2,i) && board.get(0,i)==player)
      return true;
  }
  if (board.get(0,0)==board.get(1,1) &&
       board.get(1,1)==board.get(2,2) && board.get(0,0)==player)
     return true;
  if (board.get(2,0)==board.get(1,1) &&
       board.get(1,1)==board.get(0,2) && board.get(2,0)==player)
     return true;
}
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Example 3: The Programming Languages Course
[Tucker 2002]

Goals: 
1. to teach principles of language design

(Syntax, Type Systems, Semantics)

2.  To introduce different paradigms
(Functional, Object-Oriented, Logic)

These can be achieved by
• A mathematical treatment of the principles (BNF, 

Denotational Semantics), and

• Coordinated laboratory experiences (using an 
experimental language “Jay”)

Students need to be fluent with functions, sets, and logic:
- So discrete math must be a prerequisite
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Denotational Semantics of “Jay” Assignments

• Based on a formal abstract syntax, 
Assignment = Variable target; Expression source
Expression = Value | Variable | Binary
Value = int intValue | boolean boolValue
Variable = String v
Binary = Operator op; Expression term1, term2
Operator = + | - | * | /

• a state ,

• and a state-transforming (partial) function:

 

σ v1 val1,〈 〉 v2 val2,〈 〉 … vn valn,〈 〉, , ,{ }=

M : Expression State× Value→

M : Assignment State× State→
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The meaning of Assignment and Expression

Note:  creates a new state  by replacing every pair 

 in  for which  by .

So if state  then 

M Assignment   a, State  σ( ) σ U a.target, M a.source, σ( )〈 〉{ }=

M Expression  e State  σ,( )

  e=                 if e is a Value

 σ e( )= if  e is a Variable

 Apply e.op M e.term1 σ,( ) M e.term2 σ,( ), ,( )     if e is a Binary=

Apply Operator  op, Value v1, Value v2( )

v1 v2+= if  op = +

v1 v2×= if  op = *

σ1Uσ2 σ

v val1,〈 〉 σ1 v σ2∈ v val2,〈 〉

σ x 1,〈 〉 y 5,〈 〉,{ }= σ U x 11,〈 〉{ } x 11,〈 〉 y 5,〈 〉,{ }=
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For example, if , the meaning of 
the Assignment x=2*y+1 is:

σ x 1,〈 〉 y 5,〈 〉,{ }=

M x=2*y+1, σ( ) σ U a.target, M a.source, σ( )〈 〉{ }=

σ U x, M 2*y+1, σ( )〈 〉{ }=

σ U x, Apply +, M 2*y, σ( ) M 1 σ,( ),( )〈 〉{ }=

σ U x, Apply +, Apply * M 2 σ,( ) M y σ,( ), ,( ) M 1 σ,( ),( )〈 〉{ }=

…=   =  x 1,〈 〉 y 5,〈 〉,{ } U x, 11〈 〉{ }  x 11,〈 〉 y 5,〈 〉,{ }=
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 Abstract syntax is modeled using Java classes

So for the Assignment  a = “x = 2*y+1” :
     a.target  =  Variable x

     a.source = Expression e = 2*y+1    

     e.op = +    e.term1 = Binary 2*y    e.term2 = Value 1

     ...

Operator

Assignment

Variable
x

1
ValueBinary

Operator

* 2 y
Value Variable

a

Binary

+

e
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Laboratory Opportunities

• abstract syntax of Jay => Java classes
• Semantic functions of Jay => Java methods
• OO programming => integrating semantic 

functions into abstract classes
• Functional programming => Scheme 

implementation of semantic functions
• Logic programming => Prolog 

implementation of semantic functions

Students master each paradigm by revisiting 
the same problem: formal semantics of “Jay.”
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In the Java Implementation of Jay semantics:

• the state  of a program is a Hashtable.  
• the expression , denoting the value of 

variable v in state , uses sigma.get(v)
• implementing functions M follow the math:

Value M (Expression e, State sigma) {
    if (e instanceof Value) 
       return (Value)e;
    if (e instanceof Variable)
         return (Value)(sigma.get((Variable)e));
    if (e instanceof Binary)
       return apply(((Binary)e).op, 
                    M(((Binary)e).term1, sigma), 
                    M(((Binary)e).term2, sigma));
    return null;
}

σ

σ v( )

σ
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The Functional Paradigm

A Jay state is naturally modeled in Scheme as 
a list of pairs.  

E.g.,   is modeled by ((x 1) (y 5))

The state access function get is:  
(define (get id sigma)
   (if (equal? id (caar sigma))) (cadar sigma)
       (get  id  (cdr sigma))
))

The list representation for expressions is:
;;; (value number)
;;; (variable  ident)
;;; (operator term1  term2)
;;;    where operator is one of: plus times

x 1,〈 〉 y 5,〈 〉,{ }
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The meaning of a Jay abstract expression is:
(define (m-expression expr sigma)
  (case (car expr)
     ((value) (cadr expr))
     ((variable) (get (cadr expr) sigma)
  (else (apply (car expr) (cadr expr) 
               (caddr expr) sigma))
))

The Scheme function apply is:   
(define (apply op term1 term2 sigma)
  (case op
      ((plus)  (+ (m-expression term1 sigma) 
                (m-expression term2 sigma)))
      ((times) (* (m-expression term1 sigma) 
                (m-expression term2 sigma)))
      (else #f)
))
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The Logic Paradigm (Prolog)

The Jay state  is represented by:
[[x,1], [y,5]]

The state access function get is recursive:  
/* get(var, inState, outValue) */
get(Var, [[Var, Val] | _], Val).
get(Var, [_ | Rest], Val) :- get(Var, Rest, Val).

The meaning of a Jay Expression uses the 
following representational convention: 

value(number)
variable(ident)
operator(term1, term2) 

where operator is one of: plus times

x 1,〈 〉 y 5,〈 〉,{ }
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The meaning of a Jay Expression in Prolog:

/* mexpression(expr, state, val) */
mexpression(value(Val), _, Val).
mexpression(variable(Var), State, Val) :- 
   get(Var, State, Val).
mexpression(plus(Expr1, Expr2), State, Val) :-
   mexpression(Expr1, State, Val1),
   mexpression(Expr2, State, Val2),
   Val is Val1 + Val2.
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Weaknesses of Current Programming Languages

1. incomplete character set (the “ASCII bottleneck”)  e.g., && for logical con-
junction, == for equality  

2. linear style of expression  e.g.,  board.get(i,j) for boardij  

3. absence of mathematical notation e.g., no quantifiers  

4. absence of syntactic and semantic uniformity e.g., == and equals both 
denote “equality.”  

5. limited and overspecified control structures  e.g., forcing the use of for 
statements to ask “Is there any row, column, or diagonal on the board that con-
tains three instances of player?”  

6. nonsupport for formal verification  e.g., forcing the use of comments to spec-
ify pre- and post-conditions (Java 1.4 now supports these, finally!!!).  

7. absence of integration between code and commentary  e.g., there’s no verifi-
able semantic relation between the comments and the program itself.
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A Rigorous Programming Language will:

1.  Break the “ASCII Bottleneck”

2.  Support a “publication language”

3.  Support a rich variety of expressions

4.  Enforce a more literate style

5.  Unite comments, specifications, and code
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Breaking the ASCII bottleneck
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Defining a Publication Language [CACM 1969 p 562]

procedure Ising(n,x,t,S); integer n, x, t; integer array S;

comment Ising generates n-sequences  of zeros and ones where 

 and  are given.  

...
begin
   integer k; integer array L, M[1 : ];
   ...
end Ising

S1 … Sn, ,( )

x Si
i 1=

n

∑= t Si 1+ Si–
i 1=

n 1–

∑=

t 2 1+÷
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Enforcing a More Literate Coding Style

Winner Grid  board Char  player,( )  ←

       for i 0←  to 2 

           if boardi0 boardi1 boardi2 player= = =

               true

           if board0i board1i board2i player= = =

               true

        if board00 board11 board22 player= = =( ) board20 board11 board02 player= = =( )∨

           true

        false
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Uniting Comments, Specifications, and Code

     The game is over if either the player has won or the board has no open cells.

    

        

      

GameOver: Grid Char B→×

GameOver board player,( )  =

          true if Winner board player,( ) i j, 0 1 2, ,{ }: boardij OFF≠∈∀∨

         false         otherwise

GameOver Grid  board Char  player,( )  ←

     if Winner board player,( )

          true

     else for i 0←  to 2 

                if boardi0 OFF boardi1∨ OFF= = boardi2∨ OFF=

                   false

     true
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An Agenda for Curriculum and Language Development

Experiment outside the “current textbook” box
Create new teaching materials that incorporate and inte-
grate mathematical ideas

Collaborate with others who are doing the same
Get NSF and local support for curriculum development

Contribute to language design research 
Extend the alphabet and the primitive functions
View programming as authorship rather than just coding 

Continue to view mathematical thinking as a fundamental 
paradigm for computer science
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