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ms.  Among other goals, 
 well do they do? 

.

1% of these were canceled.
[Software; April 1998].

r $125 million, 4 years, and 200 
patible and incomprehensible.
ver $500 million.  Reason: insuf-

Meyer 1997].

 the oftware industry, and so
r ergraduate programs
Undergraduate CS Goals and Outcomes

We prepare graduates for industry and for PhD progra
we prepare them to develop reliable software.  How

Often well:  
Successful software products are many:  E.g., TurboTax, Linux

But often not well:
Companies spent over $250 billion on IT projects in 1995, yet 3
Only 9% of all IT projects are delivered on time and on budget 

Specific software failures are humbling:
In 1992, AMR cancelled development of “Confirm” at a cost ove

programmers.  Reason: component software designs were incom
In 1996, the Ariane 5 launcher crashed on take-off, at a cost of o

ficient software specifications that failed to trap an exception [

Evidence suggests that something is missing: 
Rigorous software design and verification is not always practiced ins
Rigorous software design and verification is not always taught in ouund
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r Science?

horoughness in making sure      

(the rigor of death)

process for assuring that 
 robust.

imprecise process for 
What do we mean by “rigor” in Compute

Dictionary:  “rigor” = “rigid accuracy, or precision,” or “great care or t
                                that something is correct.”  
                 “Rigor mortis” = “a muscular stiffening at time of death. 

For computer science:

Rigorcs = a careful, thorough, systematic, and precise 
solutions to computational problems are correct and

Rigor mortiscs = a careless, partial, unsystematic, and 
solving computational problems. (the death of rigor)
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e

nd data structures, spe-
and linguistic realiza-

orithmic processes 
lysis, design, effi-

 abstraction (science), 
areas

996]: 
nterwoven  through all 
ter organization, pro-
Computer Science is a Rigorous Disciplin

Liberal arts model curriculum [Gibbs 1986]: 
“computer science is the systematic study of algorithms a

cifically 1) their formal properties, 2) their mechanical 
tions, and 3) their applications.”

Computing as a Discipline [Denning 1988]: 
“The discipline of computing is the systematic study of alg

that describe and transform information: their theory, ana
ciency, implementation, and application.”

The discipline has three paradigms: theory (mathematics),
design (engineering), and these occur in all subject .

Recent Curriculum models [ACM/IEEE 1991; Walker 1
Theory (as well as abstraction and design) should be i

courses, including algorithms, data structures, compu
gramming languages, and software engineering.
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 we teach are rigorous
 doing CS is rigorous
nd notations are rigorous
Viewing Rigorcs in Three Dimensions

I   Curricular rigor        = ensuring that the CS courses
II  Methodological rigor = ensuring that the process for
III Notational rigor        = ensuring that our languages a

curricular

methodological  notational

rigor

rigor  rigor

Rigorcs     =
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ical ideas and notations in 

 problem specifications 
t areas.  

and verification, as to 
I.  Curricular Rigor

To be rigorous, a curriculum should meet three goals:

Goal 1: ensure that students can use precise mathemat
all subject areas.

Goal 2: ensure that students can read and write precise
and systematically demonstrate correctness in all subjec

Goal 3: ensure  that students pay equal attention to design 
coding and debugging.
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ls?

 [Walker 1996], and in 

ete mathematics has 
ta structures)

t the principles of 

e., integrate the the-
(How) Can a Curriculum Meet these Goa

Yes, claims the Revised Liberal Arts Model Curriculum
the following way:

 
Introduce the tools for rigor early (i.e., make sure that discr

equal status with CS1, and is thus a prerequisite for da

Use rigorous techniques in CS1 and CS2 (i.e., confirm tha
mathematical logic are integral to good programming)

Continue using rigorous techniques in each core cours (i.e
ory and rigorous precision with the practice)

Below are five examples...
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related to the rigorous 
itionals.

 specifications, not infor-
ger.
Example 1: the CS1 course
Students should learn that deMorgan’s law in logic is 

implementation of programs that use loops and cond

boolean search (Argument x, List L) {
   int i = 1;

   while ( )
     i = i + 1;

   // 
   return found(x);
}

Students should learn to write programs from rigorous
mal invitations to write code and play with the debug

boolean search (Argument x, List L) {

   require: 

   int i = 1;

   while ( )
     i = i + 1;

   // 
   return found(x);

   ensure: 

}

found x( )¬ exhausted L( )¬∧

found x( ) exhausted L( )∨

L e1 e2 … en, , ,{ }= n 0≥∧

found x( )¬ exhausted L( )¬∧

found x( ) exhausted L( )∨

i∃ 1 … n, ,{ }∈ : x ei= result∧ result¬∨
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n Courses 
op invariants, class invari-
iskov 2001]

ditions).

ts is a formal agreement, with 
 and obligations must be: 

c, so:
 design course,
nd CS2, and

porate assertions and exception-
Example 2: the CS2 and Software Desig
Students should use preconditions, postconditions, lo

ants, and “design by contract” ideas.  [Meyer 1997; L

Design by Contract [Meyer 1997]:
Reliable software must be both correct and robust

Correctness is enabled using assertions (preconditions and postcon
Robustness is enabled using exceptions

The relationship between a piece of software (a class) and its clien
each having rights and obligations.  To have validity, these rights
* stated explicitly and formally (using assertions), and 
* built into the programming language.

Assertions can be well-written only with fluency in logi
1.  Discrete mathematics is a natural prerequisite for any software
2.  Assertions and exception-handling should be major topics in CS1 a
3.  The language(s) and text(s) used in CS1 and CS2 should incor

handling as key themes.
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01]:
Specification of an Integer Set [Liskov 20
public class IntSet {
  // OVERVIEW: IntSets are unbounded sets of integers
  // A typical IntSet is {x 1, x 2, ..., x n}.

  public IntSet ()
    // EFFECTS: Initializes this to be empty.

  public void insert (int x)
    // MODIFIES: this
    // EFFECTS: Adds x to the elements of this, 
    //          i.e., this_post = this + {x}.

  public void remove (int x)
    // MODIFIES: this
    // EFFECTS: Removes x from this, 
    //          i.e., this_post = this - {x}.

  public boolean IsIn (int x)
    // EFFECTS: If x is in this returns true,
    //          else returns false.

  public int size ()
    // EFFECTS: Returns the cardinality of this.

  public int choose ( ) throws EmptyException
    // EFFECTS: If this is empty, throws EmptyException
    //          else returns an arbitrary element of this.
}
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Specification of a Stack [Meyer 1997]:
indexing
   description: “Stacks, with elements of arbitrary type G”
deferred class STACK[G]
   -- a typical stack is of the form [x 1, x 2, ..., x count ]

   count: INTEGER is
            -- number of items
          deferred
          end
   empty: BOOLEAN is
            -- are there no items?
          deferred
          end
   item: G is
            -- item at top of stack
          deferred
          end
   put (x:G) is
            -- add x on top
          require 
            not full
          deferred
          ensure 
            not empty
            item = x
            count = old count + 1
          end
   remove is
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            -- remove top element
          require
            not empty
          deferred
          ensure
            not full
            count = old count - 1
          end
invariant:
   count_non_negative: count >= 0
   count_bounded: count <= capacity
   empty_if_no_elements: empty = (count = 0)
   item_at_top: (count > 0) implies 
                (representation.item(count) = item)
end -- class STACK



13  o f 26

Course

ical function.
lates to optimal design.

baum 2000]:

(recurrence):
Example 3: The Computer Organization 

Students should learn to: 
      * prove that a device correctly implements its log
      * show equivalence of functions, and how that re

E.g.,  generating the carry bit in a serial adder [Tanan

The carry bit ci can be expressed as a logical function 

a0 b0

s0

c1 c0

a1 b1

s1

c2

ai-1 bi-1

si-1

ci ci-1 ...

ci ai 1– bi 1–⋅ ai 1– bi 1–+( ) ci 1–⋅+=

Pi 1– Si 1– ci 1–⋅+=
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endency of ci on ci-1 (this 
y solving the recurrence:

 is essential here.
The trick is to derive a function that eliminates the dep
helps optimize the adder). This derivation is made b

Student comfort with logic and algebraic manipulation

ci Pi 1– Si 1– ci 1–⋅+=

Pi 1– Si 1– Pi 2– Si 2– ci 2–⋅+( )⋅+=

Pi 1– Si 1– Pi 2– Si 1– Si 2– ci 2–⋅+⋅+=

…=

Pi 1–= Si 1– Pi 2– Si 1– Si 2– Pi 3– … Si 1– Si 2– …S1P0 Si 1– Si 2– …S1c0+ + + + +
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s Course

tudy of language design.  
ram [Tucker 2001]:

nctional definition:

 about loop behavior:

ather than special cases.  
Example 4: The Programming Language

Students should integrate formal semantics with the s
E.g., here is the meaning function M for a Loop in a prog

This is modeled in Java, which is a near copy of the fu

State M  (Loop l, State sigma) {
   if (M (l.test, sigma))
        return M(l, M (l.body, sigma));
   else return sigma;
}

With formal semantics, students can reason abstractly

... and thus master the principles of language design r

M Loop l State σ,( ) M l M l.body σ,( ),( )= if M l.test, σ( )
σ=                             otherwise        

M while(i>1){fact=fact*i; i=i-1;} σ,( )                        
   M while(i>1){fact=fact*i; i=i-1;} M {fact=fact*i; i=i-1;} i , 3〈 〉 fact, 1〈 〉,{ },( ),( )=

   M while(i>1){fact=fact*i; i=i-1;} M {fact=fact*i; i=i-1;} i , 2〈 〉 fact, 3〈 〉,{ },( ),( )=

   M while(i>1){fact=fact*i; i=i-1;} M {fact=fact*i; i=i-1;} i , 1〈 〉 fact, 6〈 〉,{ },( ),( )=

   i , 1〈 〉 fact, 6〈 〉,{ }=
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orrect [Cormen 1990], as 

onstruction, counterex-
Example 5: The Algorithms Course 

Students should argue rigorously that an algorithm is c
well as analyze its complexity bounds.  

Various methods of proof should be used: induction, c
ample, equivalence, ...

... many more examples can be added!
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se:

onal and predicate logic, 
her techniques that dem-

r by properly includ-

d are correct and robust.
II.  Methodological Rigor

In the practice of computer science, professionals should u

Formal tools: discrete mathematics, including propositi
the calculational method of logic [Gries 1993] and ot
onstrate what a proof is and how to develop proofs.

Programming languages and paradigms that promote rigo
ing formal specifications.

Software designs that result from a rigorous process, an

... this subject merits a separate talk!
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and in programming lan-
 r every free occur-
ollowing:

 direct representation for 
guages.  (Instead we are 
 so forth.)
III.  Notational Rigor

The consistency issue is huge, both in formal methods 
guages!   E.g., the notation  means “substituteN fo
rence of x in expression M.”  But so does each of the f

                Quine, 1940

                 Church, 1956

     Gries, 1993

              Stansifer, 1995
            Meyer, 1990 and Watt, 1991

              Winksel, 1993 and Friedman, 1999
              Sethi, 1996

                Scott, 1999

The completeness issue is also huge!  E.g., There is no
even the basic logical operators in programming lan
forced to use surrogates like && for , ||  for , and

N x⁄[ ]M

S?
x

N
M

S
x

N
M

M
x

N
or M x:=N[ ]

M x:=N[ ]

M x N←[ ]

M N x⁄[ ]

N x⁄{ }M

M N\x[ ]

  ∧   ∨
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pered by the limits of 
.

d Framemaker equations:

ming language.
The “ASCII/QWERTY Bottleneck”

Our ability to specify and write programs is severely ham
the ASCII character set and the QWERTY keyboard

Other fonts are available: Lics, Zed, Ophir, Symbol, an

... but none of these is well-integrated with a program
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 List

epeat, ...   

, if, guard 

., only one of 
signment”)
., the “publication 
e features: 
Programming Language Design: A Wish
1.  A more complete character set
2.  Better consistency and uniformity of expression
     E.g., one way to specify a loop (collapse while, for, r
              into one form)
     E.g., one way to specify a conditional (collapse case
              into one form)
     E.g., one way to write a fundamental operation (E.g
      := , <- , is , let , setq , and = should mean “as
3.  A compilable integration of code and commentary.  E.g

language” of Algol 60 [Naur 1962] has some of thes

Reference language         Publication language
A[i]                                    
x^i                                    
10.5e-6                              
sigma                                  
a<=b and b<=c                      
italics, boldface,               procedure Ising
and support for rigorous comments...  

Ai

x
i

10.5 10 6–×

σ

a b b c≤∧≤
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969 p  562 ]

nd ones where  

ument editors 

x Si

i 1=

n

∑=
E .g ., an  A lgo l p rogram  [C A C M  1

procedure Ising(n,x,t,S); integer n, x, t; integer array S;

comment Ising generates n-sequences  of zeros a

and  are given.  

...
begin
   integer k; integer array L, M[1 : ];
   ...
end Ising

... we must begin to view compilers as doc
and not just language translators.

S1 … Sn, ,( )

t Si 1+ Si–

i 1=

n 1–

∑=

t 2 1+÷
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skell  

fficient) Haskell imple-

is a direct encoding of the 

nning fibSlow(25)  
 long these computa-
Example of “literate programming” in Ha
[Tucker 2001]

Exercise 8-24: Consider the following (correct, but ine
mentation of the familiar Fibonacci function:  

>   fibSlow n
>      | n == 0  = 1
>      | n == 1  = 1
>      | n > 1   = fibSlow(n-1) + fibSlow(n-2)

   The correctness of this function is apparent, since it 
mathematical definition discussed in chapter 3:

 

   

a.  But the efficiency of this function is suspect.  Try ru
and then fibSlow(50)  on your system and see how

fib0 1=

fib1 1=

n 1: fibn fibn 1– fibn 2–+=>∀
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de in the following 
lement tuple that con-
efine another function 
e current one.  Then the 
 Fast , is defined 
askell, this is written 
99]):

h and 50th Fibonacci 
an bSlow .  Explain.
tions take.  What causes this?

b.  An alternative definition of the fib function can be ma
way.  Define a function fibPair  that generates a 2-e
tains the nth Fibonacci number and its successor.  D
fibNext  that generates the next such tuple from th
Fibonacci function itself, which we optimistically callfib
by selecting the first member of the nth fibPair .  In H
as follows (this program is adapted from [Haskell 19

>   fibPair n 
>      | n == 0   = (1,1)
>      | n > 0    = fibNext(fibPair(n-1))
>   fibNext (m,n) = (n,m+n) 
>   fibFast n = fst(fibPair(n))

   Try running the function fibFast  to compute the 25t
numbers.  It should be considerably more efficient thfi

c.  Prove by induction that .n 0: fibFast n( )≥∀ fibSlow n( )=
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?

rrectness arguments.

urriculum.

o be more like authors and pro-

ill help address the 
Summary: How Can We Achieve RigorCS

A rigorous curriculum
Create student comfort with mathematical notation and use it.
Expect students to read and write rigorously, and to make clear co
Require students to be rigorous in all subject areas.

A rigorous software methodology
Integrate contemporary features of the software process into the c
Develop better formal methods for design and verification.

A rigorous notation and language 
An extended alphabet.
A more literate programming style that encourages programmers t

grams to be more like refereed publications than secret codes!  

Achieving RigorCS will serve our graduates well and w
software quality problem.
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(and enjoy it too!)

h rously!”
In closing, I hope you...

Have at least one rigorous experience at this conference 

Think about the level of rigor: 
in your own courses (curricular rigor)
in your own software research (methodological rigor)
in your own programming languages research (notational rigor)

Thank you again, ACM SIGCSE: “... because we teacrigo
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rce, Computing Curric-

M. Mulder, A. Tucker, 
Press, 1988.
lum for a Liberal Arts 
ACM 29,6 June 1986.
ch to Discrete Math-

ment in Java, Addi-

struction 2e, Prentice-

rithmic Language Algol 

anguages: Principles 

Model Curriculum for a 
tions of the ACM 
References

[ACM/IEEE 1991] ACM/IEEE Joint Curriclum Task Fo
ula 1991, ACM Press, 1991.

[Denning 1988] Denning, P (ed), D. Comer, D. Gries, 
A.J. Turner, P. Young, Computing as a Discipline, ACM 

[Gibbs 1986] Gibbs, N. and A. Tucker, “Model Curricu
Degree in Computer Science,” Communications of the 

[Gries 1993] Gries, D. and F. Schneider, A Logical Approa
ematics, Springer-Verlag, 1993.

[Liskov 2001] Liskov, B. and J. Guttag, Program Develop
son-Wesley, 2001.

[Meyer 1997] Meyer, B., Object-Oriented Software Con
Hall, 1997.

[Naur 1962] Naur, P (ed), “Revised Report on the Algo
60,” IFIP Press 1962.

[Tucker 2001] Tucker, A. and R. Noonan, Programming L
and Paradigms, McGraw-Hill, 2001 (in preparation).

[Walker 1996] Walker, H. and M. Schneider, “Revised 
Liberal Arts Degree in Computer Science,” Communica
39,12 December 1996.


