From Rigor to Rigor Mortis:
Avoiding the Slippery Slope

Allen B. Tucker
Bowdoin College

www.bowdoin.edu/~allen

1 of 26

Undergraduate CS Goals and Outcomes

We prepare graduates for industry and for PhD programs. Among other goals,
we prepare them to develop reliable software. How well do they do?

Often well:
Successful software products are many: E.g., TurboTax, Linux.
But often not well:
Companies spent over $250 billion on IT projects in 1995, yet 31% of these were canceled.
Only 9% of all IT projects are delivered on time and on budget [Software; April 1998].
Specific software failures are humbling:
In 1992, AMR cancelled development of “Confirm” at a cost over $125 million, 4 years, and 200
programmers.Reasoncomponent software designs were incompatible and incomprehensible.
In 1996, the Ariane 5 launcher crashed on take-off, at a cost of over $500 niéasoninsuf-
ficient software specifications that failed to trap an exception [Meyer 1997].

Evidence suggests that something is missing:

Rigoroussoftware design and verification is not always practiced isolftevare industryand so
Rigoroussoftware design and verification is not always taught iruodergraduate programs

2 of 26

What do we mean by “rigor” in Computer Science?

Dictionary: “rigor” = “rigid accuracy, or precision,” or “great care or thoroughness in making sure
that something is correct.”
“Rigor mortis” = “a muscular stiffening at time of death. (the rigor of death)

For computer science:

Rigor.s= a careful, thorough, systematic, and precise process for assuring that
solutions to computational problems are correct and robust.

Rigor mortigs = a careless, partial, unsystematic, and imprecise process for
solving computational problems. (the death of rigor)

3 of 26

Computer Sciences a Rigorous Discipline

Liberal arts model curriculum [Gibbs 1986].

“computer science is the systemaiady of algorithms and data structures, spe-
cifically 1) their formal propertie?) their mechanical and linguistic realiza-
tions, and 3) their applications.”

Computing as a Discipline [Denning 1988]:

“The discipline of computing is the systemagitady of algorithmic processes
that describe and transform information: their theanalysis, design, effi-
ciency, implementation, and application.”

The discipline has three paradigms: the@mathematics), abstraction (science),
design (engineering), and these occur in all subject.areas

Recent Curriculum models [ACM/IEEE 1991; Walker 1996]:

Theory(as well as abstraction and design) should be interwdheyugh all
coursesincluding algorithms, data structures, computer organization, pro-
gramming languages, and software engineering.

4 of 26

Viewing Rigorsin Three Dimensions

curricular
rigor

SN

methodological notational
rigor ~—> rigor

Rigof.g

| Curricular rigor = ensuring that the CS courses we teach are rigorous
Il Methodologicalkigor = ensuring that the process for doing CS is rigorous
lIl Notationalrigor = ensuring that our languages and notations are rigorous

5 of 26

|. Curricular Rigor

To be rigorous, a curriculum should meet three goals:

Goal 1:_ensuréhat students can use precise mathematical ideas and natations
all subject areas.

Goal 2:_ensurgéhat students can read and write precise problem specifications
and systematically demonstrate correctmessl subject areas.

Goal 3:_ensurehat students pay equal attenttordesign and verificatigmas to
coding and debugging

6 of 26

(How) Can a Curriculum Meet these Goals?

Yes claims the Revised Liberal Arts Model Curriculum [Walker 1996], and in
the following way:

Introducethe toolsfor rigor early(i.e., make sure thaliscrete mathematics has
equal status with CShnd is thus a prerequisite for data structures)

Userigorous techniques in C&hd CSAi.e., confirm thathe principles of
mathematical logic are integral to good programmjing

Continueusing rigorous techniques in each core co(ireeintegrate the the-
ory and rigorous precisiowith the practice

Below are five examples...

7 of 26

Example 1: the CS1 course
Students should learn that deMorgan’s law in logic is related to the rigorous
implementation of programs that use loops and conditionals.

boolean search (Argument x, List L) {
inti=1;
while (=found ¥ O-exhausted L
i=i+1;
Il found ¥ Oexhauste L
return found(x);

}

Students should learn to write programs from rigorous specifications, not infor-
mal invitations to write code and play with the debugger.

boolean search (Argument x, List L) {

require: L={e,e,...,e,} 0On=0

inti=1;

while (=found X O-exhausted L
i=i+1;

Il found ¥ Oexhausted L
return found(x);
ensure: O0{1,...,n}:x= g Oresultd-result

8 of 26

Example 2: the CS2 and Software Design Courses

Students should use preconditions, postconditions, loop invariants, class invari;
ants, and “design by contract” ideas. [Meyer 1997; Liskov 2001]

Design by Contract [Meyer 1997]:

Reliable software must be bathrrectandrobust
Correctness is enabled usiagsertiongpreconditions and postconditions).
Robustness is enabled usiexgeptions
The relationship between a piece of software (a class) and its clierfitsnsah agreementwith

each having rights and obligations. To have validity, these rights and obligations must be:
* stated explicitly and formally (usingssertion}, and

* puilt into the programming language.

Assertions can be well-written only with fluency in logic, so:

1. Discrete mathematics is a natural prerequisite for any software design course,

2. Assertionsandexception-handlinghould be major topics in CS1 and CS2, and

3. The language(s) and text(s) used in CS1 and CS2 should incorporate assertions and exception-
handling as key themes.

9 of 26

Specification of an Integer Set [Liskov 2001]:

public class IntSet {
/[OVERVIEW: IntSets are unbounded sets of integers
Il A typical IntSet is {x 1 X 2y e X n}-
public IntSet ()
/[EFFECTS: Initializes this to be empty.

public void insert (int x)
/I MODIFIES: this
/I EFFECTS: Adds x to the elements of this,
I i.e., this_post = this + {x}.

public void remove (int x)
/I MODIFIES: this
/l EFFECTS: Removes x from this,
Il i.e., this_post = this - {x}.

public boolean IsIn (int x)
/I EFFECTS: If x is in this returns true,
/! else returns false.

public int size ()
Il EFFECTS: Returns the cardinality of this.

public int choose (') throws EmptyException
Il EFFECTS: If this is empty, throws EmptyException
Il else returns an arbitrary element of this.

}

10 of 26

Specification of a Stack [Meyer 1997].

indexing
description: “Stacks, with elements of arbitrary type G”
deferred class STACKJ[G]
-- a typical stack is of the form [x 10 X 2y ey X count]

count: INTEGER is
-- number of items
deferred
end
empty: BOOLEAN is
-- are there no items?
deferred
end
item: G is
-- item at top of stack
deferred
end
put (X:G) is
-- add x on top
require
not full
deferred
ensure
not empty
item = X
count = old count + 1
end
remove is

11 of 26

-- remove top element
require
not empty
deferred
ensure
not full
count = old count - 1
end
invariant:
count_non_negative: count >= 0
count_bounded: count <= capacity
empty_if_no_elements: empty = (count = 0)
item_at_top: (count > 0) implies
(representation.item(count) = item)
end -- class STACK

12 of 26

Example 3: The Computer Organization Course

Students should learn to:
* prove that a device correctly implements its logical function.

* show equivalence of functions, and how that relates to optimal design.

E.g., generating the carry bit in a serial adder [Tananbaum 2000]:

31051 & by & bo
S Yy

| | |
S-1 $1 S

The carry bit ccan be expressed as a logical function (recurrence):

G = a_yhy_+(a_ +b_y) 0L,
=P_1+tS_10E_,

13 of 26

The trick is to derive a function that eliminates the dependengynfq; (this

helps optimize the adder). This derivation is made by solving the recurrence:

¢ =P _1+5_0E_,

P_1+S_1HP_,+S_,[E_y)
Pi_1+S_1Pi_»,*+S_;S_,E_,

Pi_1+tS_1Pi_2+S_1S_oPi_3+... +§_1S_5...SPg +S_1§_,...5C

Student comfort with logic and algebraic manipulation is essential here.

14 of 26

Example 4: The Programming Languages Course

Students should integrate formal semantics with the study of language design.
E.g., here is the meaning functibhfor aLoopin a program [Tucker 2001]:

M(Loop |, Stateg) = M(l,M(l.body, 0)) if M (l.test, 0)

o otherwise

This is modeled in Java, which is a near copy of the functional definition:

State M (Loop |, State sigma) {
if (M (l.test, sigma))
return M(I, M (I.body, sigma));
else return sigma;

}
With formal semantics, students can reason abstractly about loop behavior:

M(while(i>1){fact=fact*i; i=i-1;}, 0)

M(while(i>1){fact=fact*i; i=i-1;}, M({fact=fact*i; i=i-1;} , { 4, 30 (act, 1}))
M(while(i>1){fact=fact*i; i=i-1;}, M({fact=fact*i; i=i-1;} , { 4, 20J (act, 3}))
M(while(i>1){fact=fact*i; i=i-1;}, M({fact=fact*; i=i-1;} , { 4, 1J (act, 6}))
= {0, 10 Oact, 63

... and thus master the principles of language design rather than special cases.

15 of 26

Example 5: The Algorithms Course

Students should argue rigorously that an algorithm is correct [Cormen 1990], as
well as analyze its complexity bounds.

Various methods of proof should be used: induction, construction, counterex-
ample, equivalence, ...

... many more examples can be added!

16 of 26

ll. Methodological Rigor

In the_practiceof computer science, professionsl®uld use:

Formal tools discrete mathematics, including propositional and predicate logic,

the calculational method of logic [Gries 1993] and other techniques that dem-
onstrate what a proof is and how to develop proofs.

Programming languages and paradigha promote rigor by properly includ-
ing formal specifications.

Software designthat result from a rigorous process, and are correct and robust.

... this subject merits a separate talk!

17 of 26

lll. Notational Rigor

Theconsistencyssue is huge, both in formal methods and in programming lan-
guages! E.g., the notationvxym means “substitufer every free occur-
rence ofx in expressio.” But so does each of the following:

S?;M Quine, 1940

Sl)\(IM Church, 1956

Ml)\(l or M[x:=N] Gries, 1993

M[x:=N] Stansifer, 1995

M[X < N] Meyer, 1990 and Watt, 1991

M[N/X] Winksel, 1993 and Friedman, 1999
{N/x} M Sethi, 1996

M[N\x] Scott, 1999

Thecompletenesissue is also huge! E.g., There is no direct representation for
even the basic logical operators in programming languages. (Instead we are
forced to use surrogates lik& for o ,|| for g, and so forth.)

18 of 26

The “ASCII/QWERTY Bottleneck”

Our ability to specify and write programssisverely hamperealy the limits of

the ASCII character set and the QWERTY keyboard.

Other fonts are available: Lics, Zed, Ophir, Symbol, and Framemaker equations}

[B Equations SESESSSHnn—————————"n,y
|E Talions Symbals Latrge Relations Matrices Help
1 hal Delimiters Calculus Functions Positioning
Pl Toode 1P PPSFN P L [P F Je e |22 | 2

Forrnat — : - s .

Pt 202 =2 [32 [42 | Hr 1 [5 [
Px? | L (P22 @[V2 |Ve? | 42 T o o
?. 7 727w 7| [O2 [Oer (T2 | L7 | 42 |Px10°] ¢
?e?]| 7 [Pz we 3 [l | | ¥ |22

... but none of these is well-integrated with a programming language.

19 of 26

Programming Language Design: A Wish List
1. A morecompletecharacter set
2. Betterconsistencyand uniformity of expression
E.g.,oneway to specify a loop (collapse while, for, repeat, ...
into one form)
E.g.,oneway to specify a conditional (collapse case, if, guard
into one form)
E.g.,oneway to write a fundamental operation (E.g., coteof
= ,<-,is ,let ,setq , and= should mean “assignment”)
3. Acompllablelntegratlon of code and commentark.g., the “publication
language” of Algol 60 [Naur 1962] has some of these features:

Reference language _Publication language

All] A

XN X

10.5e-6 10.5x 10°
sigma o

a<=b and b<=c as<bObsc
italics, boldface, procedurelsing

and support for rigorousomments...

20 of 26

E.g., an Algol program [CACM 1969 p 562]

procedureIsing(n,x,t,S)integer n, x, t integer array S
commentlsing generates-sequenceg, ...s) 0f zeros and ones wherey s

i=1

andt= y|s.,-s/ aregiven.

i=1
Bégin
integerk; integer array L, M[1 : t+2+1];

eri.ci Ising

... we must begin to view compilers asdocument editors
and not just language translators.

21 of 26

Example of “literate programming” in Haskell
[Tucker 2001]

Exercise 8-24: Consider the following (correct, but inefficient) Haskell imple-
mentation of the familiar Fibonacci function:

> fibSlow n

> |n==0 =1

> |n==1-=1

> |n>1 =fibSlow(n-1) + fibSlow(n-2)

The correctness of this function is apparent, since it is a direct encoding of theg
mathematical definition discussed in chapter 3:

fiby = 1
fib, = 1
On>1: fib, = fib,_, + fib,_,

a. But the efficiency of this function is suspect. Try runfiiinglow(25)
and therfibSlow(50) on your system and see how long these computa-

22 of 26

tions take. What causes this?

b. An alternative definition of thig function can be made in the following
way. Define a functiofibPair that generates a 2-element tuple that con-
tains the nth Fibonacci number and its successor. Define another function
fiobNext that generates the next such tuple from the current one. Then the
Fibonacci function itself, which we optimistically cabFast , is defined
by selecting the first member of the fiifliPair . In Haskell, this is written
as follows (this program is adapted from [Haskell 1999]):

fibPair n

| n == = (1’1)

| n>0 = fibNext(fioPair(n-1))
fibNext (m,n) = (n,m+n)
fibFast n = fst(fibPair(n))

VVYVYVYV

Try running the functiofibFast to compute the 25th and 50th Fibonacci
numbers. It should be considerably more efficient fiiz®low . Explain.

c. Prove by induction thahz=o: fibFast(n) = fibSlow()

23 of 26

Summary: How Can We Achieve RIgogs?

A rigorous curriculum

Create student comfort with mathematical notation and use fit.
Expect students to read and write rigorously, and to make clear correctness arguments.
Require students to be rigorous in all subject areas.

A rigorous software methodology

Integrate contemporary features of the software process into the curriculum.
Develop better formal methods for design and verification.

A rigorous notation and language

An extended alphabet.
A more literate programming style that encourages programmers to be more like authors and pro-
grams to be more like refereed publications than secret codes!

Achieving Rigorcgwill serve our graduates well and will help address the
software quality problem.

24 of 26

In closing, | hope you...

Have at least onggorous experiencat this conference (and enjoy it too!)

Think about théevel of rigor.

in your own courses (curricular rigor)
in your own software research (methodological rigor)
in your own programming languages research (notational rigor)

Thank you again, ACM SIGCSE: “... because we tearously”

25 of 26

References

[ACM/IEEE 1991] ACM/IEEE Joint Curriclum Task Forad@pmputing Curric-
ula 1991 ACM Press, 1991.

[Denning 1988] Denning, P (ed), D. Comer, D. Gries, M. Mulder, A. Tucker,
A.J. Turner, P. YoungZomputing as a DisciplinBACM Press, 1988.

[Gibbs 1986] Gibbs, N. and A. Tucker, “Model Curriculum for a Liberal Arts
Degree in Computer Scienc&bmmunications of the ACEB,6 June 1986.

[Gries 1993] Gries, D. and F. Schneidgki,.ogical Approach to Discrete Math-
ematics Springer-Verlag, 1993.

[Liskov 2001] Liskov, B. and J. GuttaBrogram Development in JayAddi-
son-Wesley, 2001.

[Meyer 1997] Meyer, B.Object-Oriented Software Constructi@e, Prentice-
Hall, 1997.

[Naur 1962] Naur, P (ed), “Revised Report on the Algorithmic Language Algol
60,” IFIP Press 1962.

[Tucker 2001] Tucker, A. and R. Noond&rogramming Languages: Principles
and ParadigmsMcGraw-Hill, 2001 (in preparation).

[Walker 1996] Walker, H. and M. Schneider, “Revised Model Curriculum for a
Liberal Arts Degree in Computer SciencEdmmunications of the ACM
39,12 December 1996.

26 of 26

