
Supporting Model Checking Education using BOGOR/Eclipse∗

Matthew B. Dwyer John Hatcliff Robby Matthew Hoosier
Department of CSE Department of CIS

University of Nebraska-Lincoln, US Kansas State University, US
dwyer@cse.unl.edu {hatcliff, robby, matt}@cis.ksu.edu

Abstract

This paper describes our effort on developing educa-
tional materials on model checking to help foster the
adoption of software model checking. We describe the
course materials that provide an in-depth theoretical
background of model checking algorithms, coupled with
a tool support to apply them that is built around the
Eclipse platform. The educational materials presented
here have been used to teach graduate-level model
checking courses in a number of North American and
European institutions.

1 Introduction

Temporal logic model checking [1] is a powerful frame-
work for reasoning about the behavior of finite-state
system descriptions and it has been applied, in various
forms, to reasoning about a wide-variety of software ar-
tifacts. For example, model checking frameworks have
been applied to reason about software process models,
(e.g., [2]), different families of software requirements
models (e.g., [3]), architectural frameworks (e.g., [4]),
design models (e.g., [5]), and system implementations
(e.g., [6, 7]). The effectiveness of these efforts has in
most cases relied on detailed knowledge of the model
checking framework being applied. In some cases, a new
framework was developed targeted to the semantics of
a family of artifacts [6], while in other cases it was nec-
essary to study an existing model checking framework
in detail in order to customize it [3, 8].

Unfortunately, this level of knowledge and effort cur-
rently prevents many domain experts who are not nec-
essarily experts in model-checking from successfully
applying model checking to software analysis. Even
though experts in different areas of software engineer-
ing have significant domain knowledge about the se-
mantic primitives and properties of families of artifacts

∗This work was supported in part by a 2004 IBM
Eclipse Innovation Grant, by the U.S. Army Research Office
(DAAD190110564), by DARPA/IXO’s PCES program (AFRL
Contract F33615-00-C-3044), by NSF (CCR-0306607), by Lock-
heed Martin, by Rockwell-Collins, and by Intel Corporation
(Grant 11462).

that could be brought to bear to produce cost-effective
semantic reasoning via model checking, these experts
should not be required to build their own model-checker
or to pour over the details of an existing model-checker
implementation while carrying out substantial modifi-
cations.

To enable more effective incorporation of domain
knowledge into verification models and associated
model checking algorithms and optimizations, we have
constructed in Eclipse an extensible and highly modu-
lar explicit-state model checking framework called Bo-
gor [9].1 There are two dimensions to Bogor’s extensi-
bility: (1) Bogor’s modeling language can be extended
with new primitive types, expressions, and commands
associated with a particular domain (e.g, multi-agent
systems, avionics, security protocols, etc.) and a par-
ticular level of abstraction (e.g., design models, source
code, byte code, etc.), and (2) Bogor’s well-organized
module facility allows new algorithms (e.g., for state-
space exploration, state storage, etc) and new optimiza-
tions (e.g., heuristic search strategies, domain-specific
scheduling, etc.) to be easily swapped in to replace Bo-
gor’s default model checking algorithms.

Our own experience of customizing Bogor with
domain-specific modeling primitives and optimizations
has been quite positive. For analyzing models gener-
ated from Java source code in the next generation of
Bandera [7], Bogor provides a rich base modeling lan-
guage including features that allow for dynamic cre-
ation of objects and threads, garbage collection, vir-
tual method calls and exception handling. For these
primitives, we have extended Bogor’s default algorithms
to support state-of-the-art model reduction/optimiza-
tion techniques that we have developed by customizing
for object-oriented software existing techniques such as
collapse compression [10], heap symmetry [11], thread
symmetry [12], and partial-order reductions. In our
work on the Cadena development environment [5] for
designing component-based avionics systems, we have
extended Bogor’s modeling language to include APIs

1http://bogor.projects.cis.ksu.edu

1

associated with the CORBA component model and an
underlying real-time CORBA event service. [13, 14].
For checking avionics system designs in Cadena, we
have customized Bogor’s scheduling strategy to reflect
the scheduling strategy of the real-time CORBA event
channel, and created a customized parallel state-space
exploration algorithm that takes advantage of proper-
ties of periodic processing in avionics systems. These
customizations for Bandera and Cadena have resulted
in space and time improvements of over three orders
of magnitude compared to our earlier approach [7, 5]
which created models for Spin and dSpin. In other
work, we have extended Bogor to support checking of
specifications written in the Java Modeling Language
(JML) [15] and GUI frameworks [16]. Researchers out-
side of our group have extended Bogor to support check-
ing of programs using AspectJ.

The success and the expediency of the customization
process were determined by several factors: (1) accessi-
bility to domain knowledge, (2) intimate understanding
of existing model checking algorithms, and (3) a model
checking framework that allowed us to rapidly proto-
type ideas as concrete algorithms that we could exper-
iment with. We believe that these factors influenced
not only our specific experiences, but the experiences
of others in applying Bogor as well. While issues in (1)
should be addressed by the practitioners themselves, it
is crucial for us to provide tutorial and reference ma-
terial about Bogor’s architecture and algorithms to en-
able others to successfully customize Bogor. Moreover,
we believe Bogor itself is an excellent pedagogical vehi-
cle for teaching foundations and applications of model
checking because it allows students to see clean imple-
mentations of basic model checking algorithms and to
easily enhance and extend these algorithms in course
projects to include a variety of enhancements and opti-
mizations.

In this paper, we give an overview of our educational
materials that present foundations and applications of
software model checking using Bogor, and we describe
how the Eclipse framework enables a very effective pre-
sentation and implementation of Bogor and its extensi-
bility features. Section 2 motivates (a) our pedagogical
approach and teaching strategy, and (b) our choices of
Bogor and Eclipse as platforms for presenting a course
on model checking. Section 3 describes the educational
materials that we are developing to achieve the goals
described above. Section 4 describes our experiences
when using the materials in classroom settings. We
conclude in Section 5 with an outline of both on-going
and future work to refine the materials.

2 Motivation

While there is a wide collection of model checking liter-
ature (e.g., [1]), however, the current practice of learn-
ing model checking is to use existing model checkers
and to fit problems of interest to them. This is fine if
one only wants to know how to use a model checker,
however, as we mentioned earlier, model checking can
be made significantly more effective through domain-
specific customizations. Unfortunately, many existing
model checkers such as SPIN [10] were not designed for
extension, i.e., the implementation of the functional as-
pects of model checking is tangled and difficult to un-
derstand, let alone customize. In addition, there is a
lack of documentation that relates how the algorithms
in theoretical literature are implemented in practice.
That is, many non-trivial and subtle software engineer-
ing issues that arise when implementing the algorithms
efficiently are often not discussed.

Our goal is to develop project-oriented educational
materials on model checking that provide the basis for
a solid theoretical foundation coupled with tool support
for experimentation and supporting documentation on
how to implement, apply, and customize model check-
ing algorithms. We believe this strategy enables stu-
dents to better understand the algorithms described in
theoretical settings and to also get hands-on experience
regarding how they work.

We believe there is a strong analogy between the
strategy above, and the strategy used in teaching com-
piler technology. Parsing evolved from a topic of purely
theoretical interest, through the development of tools
that embodied state-of-the-art parsing algorithms, to
the situation today where there are mature tools in
widespread use in practice. As this technology emerged
from research into practice an accompanying shift in the
pedagogy associated with compilers took place. Mod-
ern compiler course and textbooks [17] are project-
oriented. Students learn the foundational concepts and
those concepts are reinforced through the application
of tools to solve realistic problems.

Why Bogor? In contrast to most existing model
checkers, Bogor’s modeling language (BIR) features
high-level constructs commonly found in modern pro-
gramming language such as dynamic thread and object
creations, dynamic method dispatch, exception han-
dling, etc. In addition, BIR is extensible, i.e., BIR
allows the introductions of abstract data types and ab-
stract operations as first-class constructs of the lan-
guages. This is analogous to adding a new instruction
set and types in a virtual machine. This extensibility
allows us to essentially build an abstract machine for
each specific application domain. This customized ab-
stract machine can be made to be more efficient because

2

the modeling language can move closer the abstraction
level of the system description used for that particular
application domain (e.g., Java bytecode and software
design).

Furthermore, Bogor was designed to be modular and
extensible to ease the task for understanding and cus-
tomizing it. We untangled the functional aspects of
model checking and made them as separate Bogor mod-
ules designed with open APIs using well-known design
patterns [18] and their variations. This reduces depen-
dency between the modules and allows local reasoning
of each module. Each module of Bogor can be cus-
tomized, and Bogor allows one to mix and match mod-
ules to achieve the desired abstract machine. Bogor is
implemented in Java to allow a clean implementation of
the modules in addition to being system independent.

We believe that the extensibility and open interfaces
of Bogor make it ideal as a framework to support small
to medium size projects involving the implementation
of model checker components. As with compilers, this
pedagogic approach will reinforce the foundational con-
cepts learned in the course by requiring students to
work with those concepts.

Why Eclipse? Eclipse is an open and extensible
universal tool platform.2 Eclipse provides a rich set of
infrastructure for, for example, creating integrated de-
velopment environment (IDEs), graphical editors, etc.,
that is ideal for building a user interface (UI) for a
model checking tool. Eclipse provides a plugin facility
via which one can add more features. The implemen-
tation language of Eclipse, Java, allows a tight integra-
tion of the tools. That is, we implemented Bogor as
an Eclipse plugin, and in turn, Eclipse plugin facility
could be used to implement replacement and extension
Bogor modules. Once completed, these modules are
made available to Bogor through Eclipse’s own exten-
sion point mechanism, by which new plugins can con-
tribute functionality to existing ones. All these features
of Eclipse make it an ideal choice for developing Bogor’s
UI which includes a number of pedagogically-oriented
features for supporting the educational materials that
we are developing.

3 Educational Materials

We aim to provide a complete set of course materi-
als packaged in a distribution that provides instruc-
tors with virtually all material necessary for running a
high-quality semester-length course. The material will
be packaged in an instructor distribution that includes
solutions to exams, homeworks, etc. as well as a stu-
dent distribution that contains all materials but exam,
homework, and quiz solutions. The course is struc-

2http://www.eclipse.org

tured as a collection of modules that allow instructors
to re-order, omit, or add content according to their own
goals. Course modules include (1) algorithmic founda-
tions, (2) Bogor architecture, (3) property specification
and checking, (4) optimizations, abstraction and reduc-
tion, and (5) methodologies for using model checking.

Course Materials: The heart of the material is a
set of course notes that present the technical material
for the modules above and include exercises and sug-
gestions for further reading. Accompanying the course
notes and following a parallel structure is an on-line
supplement that provides guided solutions to selected
exercises as well as commentary on how technical con-
cepts and algorithms described abstractly in the course
notes are actually implemented in Bogor. Building off
the course notes, the instructor distribution includes
PowerPoint lecture slides, source code for lecture ex-
amples, weekly quizzes and solutions, lab exercises de-
signed for interactive presentation, homeworks and so-
lutions, exams and solutions. In addition, recordings
of the authors presenting the lectures are available in
streaming video format.

Students learn to apply Bogor to model and analyze
simple concurrent systems that illustrate basic concepts
of state-space exploration. Programming projects in-
volve (re)implementing or modifying the core modules
of Bogor’s model checking engine, or implementing new
modeling language primitives using Bogor’s extensible
modeling language. In addition to simply reinforcing
the central concepts of model checking, the overall goal
of these implementation exercises is to move students
to the point where they can effectively develop model-
checking tools and associated methodologies for verifi-
cation of real world systems by tailoring Bogor to dif-
ferent application domains. The current draft of the
course materials can be downloaded at our model check-
ing course website.3

Methodological aspects of model checking (and Bo-
gor, in particular) are also emphasized. This in-
cludes repeatable strategies for capturing concurren-
t/distributed systems as effective verification models,
applying abstraction and other state-space reducing
model transformations, and using a pattern-based ap-
proach to constructing temporal specifications.

Tool Support: As mentioned earlier, we leveraged
the rich infrastructure already provided by Eclipse for
developing Bogor UI. We developed a customized text
editor for BIR that features syntax highlighting and a
well-formed-ness checker (e.g., type checker) by extend-
ing Eclipse’s basic text editor. If there is a syntax error
or a type error, then the checker gives an informational
message similar to Eclipse’s Java Development Tooling

3http://model-checking.courses.projects.cis.ksu.edu

3

system SumToN {
const PARAM { N = 5 ; }
t y p e a l i a s byte i n t wrap (0 , 2 5 5) ;

by te x := 1 ;
byte t1 ;
by te t2 ;

a c t i v e [2] thread Worker () {
l o c l o c 0 :

do { t1 := x ; } goto l o c 1 ;
l o c l o c 1 :

do { t2 := x ; } goto l o c 2 ;
l o c l o c 2 :

do { x := t1 + t2 ; } goto l o c 0 ;
}

a c t i v e thread Prope r t y () {
l o c l o c 0 :

do { a s s e r t (x != (byte) PARAM.N) ; }
r e t u r n ;

}
}

Figure 1: A simple BIR model

(JDT), i.e., by using problem markers that appear in
the Eclipse problem view and also in the vertical rule
of the editor that highlights the problematic lines. This
helps Bogor users when modeling systems manually; for
example, it helped our students when creating mod-
els for exercises, homeworks, and projects. The Bogor
manual that includes BIR documentation (e.g., gram-
mar, language description, abstract syntax tree imple-
mentation in Java, etc.) and Bogor extension tutorials
is directly accessible through the Eclipse help system.

In addition to the integrated BIR editor and Bogor
manual, the Bogor UI features a user-guided simulation
mode and a counter-example display which mimics the
“look and feel” of controls used in JDT’s own debugger
for Java applications. The counter-example explorer
eases students’ transition to verification tools by incor-
porating the familiar debugging idioms of breakpoints
and several varieties of stepwise navigation (e.g., step
over,step into, step until return). This viewer frame-
work also exposes hooks which allow custom algorithm
implementors to easily annotate the model display to
visualize the status of computational machinery used
to enforce system properties.

Bogor also provides a graphical view for BIR states
as object diagrams by using the Eclipse Graphical Edit-
ing Framework (GEF).4 These features are particularly
useful for exploring the state-space of models and also
to understand counter-examples. A short error trace
from a simple transition system in Figure 1 is analyzed
with the Bogor UI in Figure 2; the readers are encour-
aged to download Bogor and try it on more complex
examples.

4http://www.eclipse.org/gef

Figure 2: Counter-example view in Bogor

4 Experiences

In this section, we compare our experiences in teaching
a graduate-level model checking course at Kansas State
University over the past several years using the SPIN
model checker at first, and then using the educational
materials described in the previous section for the last
two semesters.

When we taught the course using SPIN, we taught
students how to model small concurrent systems with
Promela and had them use SPIN to check their sys-
tems. These illustrated the usefulness of model check-
ing to find subtle concurrent bugs and to check safety
and liveness properties. We then taught them SPIN’s
reduction algorithms and had them experiment and ob-
served the effects of the algorithms to the search state
space. However, we often found the students did not
understand how the algorithms worked and what their
effects meant. In order to address this, we believed that
we had to teach the students how the algorithms were
implemented and have them experiment and modified
them. However, the tangled-ness of SPIN’s implemen-
tation hindered us in fitting this approach in a semester-
long course.

When we shifted to use the course materials described
in the previous section, we could emphasize on teaching
how the algorithms were actually implemented and the
students could see how they work in action. We then
taught them how to extend the algorithms in Bogor,
and had them work on several small to medium-size
projects. These projects helped reinforce their knowl-
edge of model checking algorithms. Some of the project
work that they have done were the basis of some re-
search papers [19, 20], and some became the topics of
their master theses (ongoing).

Based on the students feedbacks, there were sev-
eral features in the tool support mentioned earlier

4

that helped their study: (1) BIR syntax highlight-
ing and meaningful information from the well-formed-
ness checker integrated in Eclipse helped them when
modeling systems in BIR, (2) Bogor’s user-simulation
mode and counter-example display (both tree-based
and graphical-based views) helped them to understand
models (by exploring their state-space) and counter-
examples easier, (3) the modularity of Bogor helped
them to focus and localized their efforts when customiz-
ing it, and (4) the fact that Bogor is written in Java
enabled them to use Eclipse’s Java facilities to develop
their Bogor extensions.

5 Conclusions and Future Work

We believe that our experiences suggest that the course
materials that we are developing coupled with a tool
support help the process of learning model checking and
how it can be applied in software. The educational
materials described in this paper have been used to
teach graduate-level model checking courses at Kansas
State University (USA), University of Nebraska-Lincoln
(USA), Brigham Young University (USA), Queen’s
University (Canada), and Georg-August-Universität
Göttingen-Institut für Informatik (Germany).

Ongoing work includes polishing the course materials
and improving Bogor UI such as providing additional
views for counter-examples (e.g., a thread sequence di-
agram), as well as other pedagogical views such as state-
space view. Future work includes integration with other
verification tools such as the next generation Bandera
tool-set5 and JMLEclipse6.

About the Authors

Matthew B. Dwyer is a Henson Professor of Engineering

at UNL-Lincoln, John Hatcliff is an Associate Professor at

KSU, Robby is an Assistant Professor at KSU, and Matthew

Hoosier is a research associate at KSU. They are working in

the areas of model-checking, static analysis, and other forms

of software verification.

References

[1] E. Clarke, O. Grumberg, and D. Peled, Model Checking.
MIT Press, 2000.

[2] C. T. Karamanolis, D. Giannakopolou, J. Magee, and S. M.
Wheather, “Model checking of workflow schemas,” in 4th In-
ternational Enterprise Distributed Object Computing Con-
ference, pp. 170–181, Sept. 2000.

[3] W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H. Jones,
and W. E. Warner, “Optimizing symbolic model checking for
statecharts,” IEEE Transactions on Software Engineering,
vol. 27, no. 2, pp. 170–190, 2001.

[4] D. Garlan, S. Khersonsky, and J. S. Kim, “Model check-
ing publish-subscribe systems,” in Proceedings of the 10th
International SPIN Workshop on Model Checking of Soft-
ware, pp. 166–180, May 2003.

5http://bandera.projects.cis.ksu.edu
6http://jmleclipse.projects.cis.ksu.edu

[5] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad,
“Cadena: An integrated development, analysis, and verifi-
cation environment for component-based systems,” in Pro-
ceedings of the 25th International Conference on Software
Engineering, pp. 160–173, 2003.

[6] G. Brat, K. Havelund, S. Park, and W. Visser, “Java
PathFinder – a second generation of a Java model-checker,”
in Proceedings of the Workshop on Advances in Verification,
July 2000.

[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng, “Bandera : Extracting
finite-state models from Java source code,” in Proceedings of
the 22nd International Conference on Software Engineering,
pp. 439–448, June 2000.

[8] C. Demartini, R. Iosif, and R. Sisto, “dSPIN : A dynamic
extension of SPIN,” in Theoretical and Applied Aspects of
SPIN Model Checking (LNCS 1680), Sept. 1999.

[9] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: An extensible
and highly-modular model checking framework,” in Proceed-
ings of the 9th European Software Engineering Conference
held jointly with the 11th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 267–276, 2003.

[10] G. J. Holzmann, “The model checker SPIN,” IEEE Trans-
actions on Software Engineering, vol. 23, pp. 279–294, May
1997.

[11] R. Iosif, “Symmetry reduction criteria for software model
checking,” in Proceedings of Ninth International SPIN
Workshop, vol. 2318 of Lecture Notes in Computer Science,
pp. 22–41, Springer-Verlag, Apr. 2002.

[12] D. Bosnacki, D. Dams, and L. Holenderski, “Symmetric
SPIN,” International Journal on Software Tools for Tech-
nology Transfer, vol. 4, no. 1, pp. 92–106, 2002.

[13] W. Deng, M. Dwyer, J. Hatcliff, G. Jung, and Robby,
“Model-checking middleware-based event-driven real-time
embedded software,” in Proceedings of the 1st Inter-
natiuonal Symposium on Formal Methods for Component
and Objects, pp. 154–181, 2002.

[14] M. B. Dwyer, Robby, X. Deng, and J. Hatcliff, “Space re-
ductions for model checking quasi-cyclic systems,” in Pro-
ceedings of the Third International Conference on Embedded
Software, 2003.

[15] Robby, E. Rodŕıguez, M. B. Dwyer, and J. Hatcliff, “Check-
ing strong specifications using an extensible software model
checking framework,” in Proceedings of the 10th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, vol. 2988 of Lecture Notes
in Computer Science, pp. 404–420, Mar. 2004.

[16] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser, “Analyz-
ing interaction orderings with model checking,” in Proceed-
ings of the 19th IEEE Conference on Automated Software
Engineering, 2004. (to appear).

[17] A. W. Appel, Modern Compiler Implementation in Java.
Cambridge University Press, 1997.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Addison-Wesley Pub. Co., 1995.

[19] E. Rodŕıguez, M. B. Dwyer, J. Hatcliff, and Robby, “A flex-
ible framework for the estimation of coverage metrics in ex-
plicit state software model checking,” in Proceedings of the
2004 International Workshop on Construction and Analysis
of Safe, Secure and Interoperable Smart Devices, 2004. (to
appear).

[20] M. Hoosier, J. Hatcliff, Robby, and M. B. Dwyer, “A case
study in domain-customized model checking for real-time
component software,” in Proceedings of the 1st International
Symposium on Leveraging Applications of Formal Method,
2004. (to appear).

5

