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Abstract

The Java Modeling Language (JML) is a behavioral interface specification language tailored
for specifying Java modules. This paper describes a source-to-source translation tool that
takes a JML specification and Java source code for a module and produces source code that
checks assertions at run-time. It describes issues unique to JML, including specification-only
variables, refinement, specification inheritance, and privacy. It also describes the design and
implementation of the translation tool.
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Chapter 1

Introduction

1.1 Specification and Assertion Checking

The Java Modeling Language (JML) [LBR99] is a model-based behavioral interface spec-
ification language (BISL) tailored to Java. It is based on Eiffel [Mey88] and Larch/C++
[L.C92] (a BISL tailored to C++). It includes features like quantification, specification-only
variables, etc., that makes it more powerful and expressive than Eiffel. It allows one to
specify Java modules (classes, interface, etc.) in terms of annotated assertion expressions.
Annotations are viewed by a standard Java compiler as comments, while the assertions
describe a property of the module in terms of various program entities like local variables,
instance variables, etc. [Mey88]. Assertions state “what” a module should do without
stating “how” it should be done.

As a means of debugging and of partially checking correctness, one would like to see if
a module satisfies these assertions at run-time. However, until recently, few programming
languages supported assertions as a means of run-time program verification — Fiffel is
one such language. Although Java lacks such support, new third-party tools like iContract
[iCo00] are being developed for Java that enable one to specify, and later check, Java
modules using annotated assertions. This document describes one such tool that takes Java
source code, annotated with JML specifications, and performs source-to-source translation
to generate an alternate source code, which, when executed, will check if the module adheres
to its specification. This tool is integrated with existing JML type checker [Gan98] and uses
ANTLR [Par99].

The current version of the tool only supports checking preconditions. This should not
be a major limitation as it is suggested in [Mey88, pages 145-146] that as a good pro-
gramming style and to avoid software failure, it is usually enough to check preconditions
without degrading the performance appreciably. The tool can also demonstrate semantics
of behavioral subtyping and use of specification-only variables by checking preconditions.

1.2 Goals

The goals of source-to-source translation are:
e Any type-correct source code, when translated, should remain type-correct.

e Any code that is being added should not alter the current state of the computation
and thus affect the final result.



e Execution of the translated code with assertion checks turned off should be identical
to the execution of the original source code. It may reduce the speed of execution,
however.

e The source code added should not give rise to any name space conflicts with the
existing variables. That is, if the new code uses some temporary variables, they
should have fresh names.

e The tool should be able to translate specifications that use specification-only variables.

e The tool should work in presence of information hiding and inheritance. That is, one
should be able to inherit the assertions from the superclass in a subclass in presence
of information hiding in Java to enforce subcontracting (see Section 2.1.4).

e The tool should be maintainable given that both JML and Java are being constantly
modified to include more and more language features.

e Compile-time performance of the tool — speed of translation, although not crucial,
is important. This speed should be kept reasonable by sharing information among
different phases of the tool and by reducing number of passes through the source code.

o In the event of assertion failure, the tool should give enough context information about
the failure. Such context information could include, but is not limited to:

1. Name of the file that contains this assertion,
2. Name of the class that checks the assertion,
3. Line number of the file,
4

. Name of the method that contains the code, etc.

Note that in presence of behavioral subtyping (Section 2.1.4), refinement (Section 2.1.10)
and interface implementation (Section 2.2), the actual assertion expression may be
physically located in some other file or class. Context information should direct the
user as close to the source of the failure as possible.

The next section gives an overview of the tool — what it does, how it is used, etc.

1.3 Overview of the tool

The basic usage of the tool is as shown in the figure 1.1. The tool has two components:
a translator and a run-time system. The translator is a source-to-source tree transformer
integrated with the JML type checker. It takes a file “Foo.java” annotated with JML
specifications and transforms the generated abstract syntax tree (AST) to produce a file
with the same name “Foo.java” that contains extra code to perform the assertion checks
at run-time. The new code retains all the old source code so as to retain the functionality
of the original source code. This new, augmented source code is then compiled using a
standard Java compiler and executed with the run-time system. The run-time system helps
the user control the assertion checking. By setting various options provided by the run-time
system, the user can switch off the execution of the code that checks assertions, modify the
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Figure 1.1: Usage of the tool.




types of assertions to be checked, and the way the tool should handle assertion failures, all
without regenerating the code and without recompiling the entire source code!.

To make full use of assertion inheritance, the user is required to generate instrumented
source code for the superclass as well. This is a must especially if the the base class refers
to specification-only variables (see Section 2.1.5) defined in the superclass.

In chapters to come, we describe the issues in the tool’s design (Chapter 2) and the
design and the implementation (Chapter 3); Chapter 4 discusses further enhancements to
the tool. We end the discussion by describing related work in Chapter 5. Appendix A gives
listing of the translated source code for class BoundedColorPoint shown in figure 3.3.

!Typically the part of the source that sets these options will need to be recompiled.



Chapter 2

Issues

This chapter discusses several issues that influenced the design the tool.

2.1 JML features

JML has rich syntax and features that allow one to specify Java modules with a lot of expres-
sive power. This section describes those features that need to be taken into consideration
in designing the run-time assertion checker.

2.1.1 Preconditions [JML keyword: requires]

Preconditions are assertions that must be satisfied when a routine is called. These are
usually expressed in terms of state variables of a module and input parameters to the
routine. These preconditions have to be checked before any of the code of the routine is
executed and after checking the invariants (see Section 2.1.3), if any. The main function of
the first version of the checker is to check preconditions.

2.1.2 Assertion Expressions [JML keyword: assert]

General assertion expressions can occur anywhere in the body of a routine, and are written
using assert in JML. They describe assertions over the current state of computation. Such
expressions can be handled in a way similar to preconditions, but their handling will differ
in following cases:

1. As they can occur anywhere in the text of routine, translating these to source code
will require us to make sure that the code is placed at the appropriate point in the
body of the current method.

2. Expressions described using assert will not be inherited like preconditions.
3. They also require the checker to process the entire source code of the current method
instead of just the method specifications.
2.1.3 Class Invariants [JML keyword: invariant]

Class invariants express global properties of an instance of a class, which must be preserved
by all the routines of the class [Mey88]. These are logically factored out of preconditions
and postconditions of all non-private methods of a module. Note that:



1. The effective class invariant is the conjunction of all the individual class invariants.
Since individual invariants may be scattered all over the class, they will need to be
collected first in order to form an effective invariant. This can be done by having a
compiler pass collect all the invariants. Such a pass can be a separate one or it can
be combined with other compiler passes like the pass that does type checking.

2. Effective preconditions and postconditions are to be formed by the conjunction with
the class invariants. As a conjunction is short-circuited in Java, invariant expression
should be checked before both the preconditions and the postconditions of the public
methods are checked.

2.1.4 Behavioral Subtyping and Specification Inheritance

Through behavioral subtyping a BISL forces subcontracting [Mey88, DL96]. Syntactically
subtyping implies that a subtype object should be able to replace a super-type object in a
module without the client getting any type errors. Behavioral subtyping adds an additional
constraint that such a replacement should not produce an unexpected behavior for the client
that is expecting the super-type’s behavior. This implies that any method redefined in the
derived class, has the responsibility of carrying out the contract defined by the original
method in the super class.
The rule of subcontracting, applied to inheritance, is stated in [Mey88, page 256] as:

Assertion redefinition rule : Let r be aroutine in class A and s a redefi-
nition of r in a descendant of A, or an effective definition of r if r was deferred.
Then pres; must be weaker than or equal to pre,, and post; must be stronger
than or equal to post,.

This rule is viewed to be stronger than necessary in JML. Therefore, JML uses following
inheritance semantics (see [DL96]) instead of the one given above:

Effective precondition for a redefined routine is the disjunction of existing pre-
condition and all preconditions existing in all previous definitions of the routine.
Effective class invariants are formed by conjunction. Effective postconditions
are formed using following rule:

( pre,. ==> post, ) && (pre; ==> post,)

When inheriting the specifications the base class may not have any assertions at all. In
such a case, the precondition of the super class method is considered to be true and hence
after combining, the subclass method has precondition true.

2.1.5 Specification-only variables [JML keyword: model, depends, and
represents]

Specification-only variables are the basis of model-based specification of abstract data types.
These are the variables that are used to describe the model that is being implemented by
a concrete variable(s), and are usually accompanied by an abstraction function. In JML,
this abstraction function is described using a Java expression in a represents clause that
evaluates to yield the specification-only variable. Such a description will look like:



represents: model_var <- expression ;

The steps that will be required are:

1.

For every model variable encountered, record the name and the type of the variable
in the type checker symbol table.

. For every represents clause, lookup the symbol table for a corresponding model vari-

able entry:
(a) If an entry is found, note the abstraction function that is to the right of <- in
the represents clause.

b) If entry is not found, just make an entry with this abstraction function for the
y s J y
model variable.

2.1.6 Privacy of specification

Privacy of specification enhances behavioral subtyping semantics for JML (see Section 2.1.4).
By using this semantics, individual specifications, for example, invariants, can be declared
as public, protected, or private or it can have the default visibility (i.e., a package vis-
ibility). Semantically it means that a public or protected specification should not have
reference to private class members, and so on.

When translating code in presence of privacy of specifications we need to note the
following:

1.

Make sure that a protected specification does not have reference to any private
data member or function and a public specification does not refer to any protected
or private data member.

. Specifications tagged private will not be subcontracted by a subclass and specifica-

tions with default visibility will not be subcontracted by a subclass that is not in the
same package as the super class.

. A private model variable or data member may be declared spec_public for speci-

fication purposes. While semantically, use of such a member is valid in a public or
a protected assertion, when such an assertion is inherited in subclass, it will refer
to the private member of the super class. Therefore, references to such a member
will need to be replaced by a call to a new protected method added to the class to
enclose reference to this member. The protected method will be inherited by the
subclass and therefore can be referred by the inherited specification in the subclass.

. A specification-only (or model) variable (see Section 2.1.5) can be represented by

expression that contains reference to private members of the class. Similar to the
case above, a wrapper method with protected visibility will need to be added that
evaluates this expression and returns its value.

. In presence of Java information hiding it may not be possible to just inherit and conjoin

(or disjoin) the text of assertion. If one just inherits the text, the text may refer to
the private members of the super class. Such translation will result in compilation
errors in the translated code. So the final scheme needs to find a way to semantically
augment the assertions without disturbing the visibility.



2.1.7 Quantification [JML keyword: forall and exists]

JML increases expressive power of assertions by incorporating universal and existential
quantifiers. The following issues need to be considered while tying to translate the quanti-
fiers to suitable Java code:

1. If the quantification is over an infinite domain, we will need to map it to a bounded
domain in Java depending on the type of domain. For example, an infinite domain
of integers can be mapped using Integer .MIN_VALUE and Integer .MAX_VALUE. That
is, a quantification given by:

\forall (int i) i > 0 ==> Math.pow(i,2) > O
is over infinite domain of positive integers that can be translated to look like:
\forall (int i) i > O && i <= Integer .MAX VALUE ==> Math.pow(i,2) > O

But such a mapping may not be so obvious for complex data types, especially the
user-defined ones.

2. In case of bounded quantification, JML syntax does not enforce any order on the
bounding predicate. That is, a bounding predicate over the domain of integers may
be written as (lower_bound < var && var < upper_bound) or (upper_bound > var
&& var > lower_bound). For example, a bounded quantification using integers can be
written in JML as:

\forall (int i) O <= i && i < list.size() ==> list.elementAt(i)'!= null
or as :
\forall (int i) i < list.size() && 0 <= i ==> list.elementdAt(i)!= null

where 1ist is an object of type java.util.Vector. To construct an equivalent loop
this order will have to be taken into account.

A reasonable scheme could be to construct a lazy enumeration of an object store (see
[KC97]) using the type of the object and the bounding predicate. A lazy enumeration
would be the one in which an object will not be constructed until its value is asked; it will
be constructed only when the enumeration is asked to give the next element of the domain.
This scheme still requires the enumeration to know the upper and the lower bounds in order
to terminate normally.

2.1.8 Labeled Assertions [JML keyword:
label]

Like in Eiffel, an expression in JML can be labeled for readability. This label can give
contextual information in the event of failure. For example, one can print the label (if any)
of the failed assertion in the error message. Therefore we should record and later use the
label as a part of information to be displayed in the event of assertion failure.

10



2.1.9 Order of subexpressions and Run-time Exceptions

In JML, order of subexpressions in a predicate is immaterial. That is, a predicate can be
written as (((z/y) > 1) || (y == 0)) or ((y == 0) || ((x/y) > 1)). Translated code for
this predicate would, however, impose an order because of short-circuited operator ||’ in
Java. This creates a problem in presence of code that may throw a run-time exception.
For example, in the predicate mentioned above, if (y = 0), subexpression (x/y) will throw
DivideByZero exception at run-time in Java. Because of such cases, the exception needs to
be caught and the value of the subexpression be set to false, so that when these expressions
are evaluated and combined, the assertion evaluates without throwing any exceptions. This
scheme also eliminates the order imposed by Java as both of the expressions given above
will evaluate to true if (y = 0).

2.1.10 Refinement Syntax [JML keyword: refines]

JML permits a user to write specifications for a given module in several files. Use of such
separate files allows the user to separate the concrete implementation of the module from
its specifications. A refines clause in the corresponding Java file that implements the
module tells the reader where to find its specifications [LBR99, Page 3]. Such a refinement
can be done recursively using more than one file, where one file refines the other and so on.
Therefore, a complete specification of the given module needs to be obtained by merging
all the individual specifications from these files.

2.1.11 Non-executable assertions

Until now, we discussed various JML features and how they may be translated into to Java
syntax. However, there are a lot of features that do not lend themselves easily to such
translation. Assertions that use such features will essentially be considered non-executable.
Non-executable assertions are the specification expressions that can not be translated to
Java due to various factors:

1. Presence of certain JML features in the assertion. For example, quantifiers (see Sec-
tion 2.1.7) will be considered non-executable in the first version of the tool, implying
that any assertion with keywords forall or exists will be non-executable.

2. If assertion expressions contain subexpressions that are non-executable, then the
subexpression will be considered as \not_specified.

3. A non-executable assertion will be considered \not_specified for the purpose of
inheritance.

In the next section, we discuss some features of Java that require attention while during
the process of translation.

2.2 Java features

This refers to Java language features and constructs that require special consideration.

Threads In Java, a multi-threaded program may spawn a number of threads of execution.
These threads share the instance variables of the class but have different flow-of-
control. This implies that each thread can invoke methods independently. It also

11



means that each thread will check specifications for each method separately. So the
generated source code needs to be thread-aware (re-entrant).

Interfaces Interfaces are Java modules that can have only static data members and
method prototypes. Actual implementation of the methods have to be in a class that
implements the particular interface. But, in JML, an interface method may have
specifications that need to be satisfied by the implementation of that method. So
we need to combine the specifications written for an interface with that of the class,
which implements the interface, before generating the assertion checking code for the
class.

Name conflicts Java allows one to define packages so that developers can avoid nam-
ing conflicts. Files in a package need to reside in a particular subdirectory of path
reachable through CLASSPATH environmental variable. Also all the public classes and
interfaces need to be in files with the same name, with a “.java” extension. When the
tool inserts new code in a class, the combined code needs to be written to a file and
then compiled using a standard Java compiler. This new file still needs to be in the
same package and have the same file name so that it can be compiled and used by
others. This results in naming conflict for the new source code.

Overwriting an original file is one way to avoid naming conflicts. But the new file may
be highly unstructured as it is required to combine and carry a lot of information —
for example, invariants from a super class or interface the class implements. One way
to avoid overwriting, is to create a source code library structure similar to that of the
existing code. By manipulating the CLASSPATH environment variable one may be able
switch between the new and the old code.

2.3 User features

As mentioned in Chapter 1, a user is expected to use this tool to translate specifications
written in JML into Java source code that will perform checks at run-time. Such a trans-
lation may add a lot of source code into the existing program. This may not only increase
the size of the code but also slow its execution considerably. Therefore, the user needs to
have fine control on the process of translation of the code as well as on the process of run-
time checking. This control is provided through various options to the user. This section
discusses various issues that need to be considered in order to provide such support.

2.3.1 Compile-time options

These are the options that the user requires to control the process of translation. These
options will mainly affect the size of the code that will be generated upon translation. The
following options are considered to be useful:

e The user should be able to generate the code only for selected types of assertions
(preconditions, invariants, etc.). By default, the tool will generate the code only for
preconditions.

e The user should be able to get warnings when the tool is not able to generate the
code for a given specification, for example, if the specification is non-executable (see
Section 2.1.11). Such a warning should have enough context information to help the

12



user identify the cause so that he or she may take measures to correct the problem if
desired.

2.3.2 Run-time options

Run-time options let the user control the actual assertion checking process at run-time.
These options can affect the speed of execution of the translated code. To be able to use
some of the options at the run-time, the user must first generate the code with proper
options (as described in previous section) at the compile-time. For example, for checking
preconditions at the run-time, option to generate code for preconditions or all assertions
must be used at the compile-time. The following options can give good control at run-time:

o The user should be able to turn execution of the code that checks assertions on and

off.

e There are several ways to recover from failure when a particular assertion is not
satisfied. Some of those include giving error messages, throwing run-time exception,
and halting. The tool will have to provide such different ways for recovery and an
option to the user to select one of them.

Next section discusses other issues that influenced the design of the tool.

2.4 Other issues

Assertion expressions may call other methods of the same or a different class. These methods
themselves may have assertion checking code. Such a recursion may give rise to circular
dependencies, therefore such recursion should be avoided [Mey88, pages 156—-157]. To avoid
this problem, assertion checking needs to be turned off once the execution is inside the code
that is checking assertion expression for a given method. This means that the execution of
the assertion checking code for the methods invoked as a part of assertion checking code
will be turned off.
In the next chapter we discuss the design and implementation of the tool.

13



Chapter 3

Design and Implementation

This chapter discusses the design of the tool. The design is mainly based on issues discussed
in Chapter 2. In Section 3.1 we discuss the transformations the original source code goes
through and then in Section 3.2 we discuss the design of the translator that does the
transformations.

3.1 Transformations

In this section we give a line-by-line explanation of code transformations using the examples
in figures 3.1 and 3.2, where figure 3.1 is the original source code and figure 3.2 is the
transformed code.

Consider figure 3.2. Lines 1-7 contain the class definition, the method header, and the
method specification and are identical to lines 1-7 in the original source code (see figure 3.1).
Lines 824 are the ones that are added by the translator to check the precondition of the
method isqrt at run-time, while the block spanning lines 25-27 is the original body of the
method isqrt.

The translator converts the precondition into an if-then block on lines 8-24. This block
is inserted before the original method body so that the precondition is checked before the
method is executed. The condition in the if statement is a call to isActive() (lines 8 and
9) to check if this code should indeed be executed at run-time. The method isActive()
checks if:

1. this type of assertion is allowed to be checked at run-time. This is determined by pass-
ing the type of this assertion (PRECONDITION on line 9) to isActive(). isActive()
checks if a run-time system option, called an assertion level, permits us to check this
type of assertion. Any assertions above assertion level should not be checked. For
example, a precondition can be checked if the level is PRECONDITIONS_ONLY (implies
that check only preconditions) or ALL (implies that check all types of assertions), but
checking a postcondition requires the level to be set to the later.

2. the call to this method at run-time is part of assertion checking code of any other
method for the same thread of execution. If yes, then this code should not be executed
to avoid recursions as described in Section 2.4.

Possible recursion is checked by the run-time system by maintaining a per-thread flag
in a hashtable. This table maps a Thread object to a boolean flag. Whenever a
thread enters the code to check assertions in a method for the first time, an entry is

14



public class IntMathOps { // 1
public static int isqrt(int y) /] 2
/*@ normal_behavior // 3

@ requires: y >= 0; // 4

@ ensures: \result * \result <=y // 5

Q && y < (\result + 1) * (\result + 1); // 86

ex/ /17

{ return (int) Math.sqrt(y); 7} // 8

} /19

Figure 3.1: Original source code. (Adapted from [LBR99])

created in this table and is set to false; a call to enterAssertionCheck() on line 10
and 11 does this. Whenever the thread tries to execute assertion check code for any
other method while inside the first assertion check code, it checks the value of this
flag in the table. If the flag is set to false then the assertions are not checked for this
method. On exiting the first assertion check code, a call to exitAssertionCheck()
(line 23 and 24) destroys the flag.

The entry in the table is destroyed to keep the size of the table under control, as
a large number of threads can exist and can be created at any time in the system.
Also the table will be required to be cleaned up time-to-time by deleting entries
corresponding to the terminated threads. To avoid the overhead of cleaning up, the
entry corresponding to a thread object is created and destroyed on-the-fly.

As we continue to describe figure 3.2, lines 12-18 actually evaluate the precondition
expression described by the requires clause on line 4. The value of the expression is
assigned to a temporary boolean variable, __jm10. The whole evaluation is enclosed in a
try-catch block to recover from any runtime exceptions thrown by this code so that it also
takes care of the order of evaluation (see Section 2.1.9). The value of this variable along with
some context information (in this order) like the type of the assertion — PRECONDITION,
the name of the file — “IntMathOps.java”, the line number of the assertion clause in the
original definition — 4, the name of the class — “IntMathOps”, and the name of the method
— “isqrt” are passed to a method assert()! (lines 19-22). This method checks the value
of the variable. If it is false, implying a failed assertion, then assert() combines the
context information to create an error message and throws AssertionException() at run-
time. The user can change the failure recovery mechanism to get an error message displayed
instead of an assertion being thrown.

In the next section, we describe the design of the translator that actually transforms
the code.

!The last parameter to assert() is currently null and is reserved for future enhancements to include
support for label information.(see Section 2.1.8)

15



public class IntMathOps { //1

public static int isqrt(int y) //2
/*@ normal_behavior //3
requires: (y >= 0); //4
ensures: (((\result * \result) <= y) //5
&& (y < ((\result + 1) * (\result + 1)))); //6
ex/ /17
{
if (edu.iastate.cs.jml.checker.runtime.Checker.isActive( //8
edu.iastate.cs.jml.checker.runtime.TypeCode.PRECONDITION) //9
)
edu.iastate.cs.jml.checker.runtime.Checker. //10
enterAssertionCheck(); //11
boolean __jmlO0; //12
try o //13
__jml0 = (y >= 0); //14
} //15
catch(Exception e) { //16
__jml0 = false; //17
} //18
edu.iastate.cs.jml.checker.runtime.Checker.assert( //19
__jmlo, //20

edu.iastate.cs.jml.checker.runtime.TypeCode.PRECONDITION,//21
"IntMathOps.java", 4, "IntMathOps", "isqrt", null ); //22

edu.iastate.cs.jml.checker.runtime.Checker. //23
exitAssertionCheck(); //24

}
{ /725
return (int )Math.sqrt(y); //26
} /727

Figure 3.2: Generated source code.
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3.2 The Design of the Translator

This section describes various phases of the translator and interaction between these phases.
This design discussion assumes the translation of only preconditions although the design
can be extended to include other types of assertions.

For describing the design, we use the class BoundedColorPoint (figure 3.3) as an exam-
ple. This class extends class Point (figure 3.4) while implementing interface ColorPoint
(figure 3.5) and refining file BoundedColorPoint.jml-refined (figure 3.6).

3.2.1 Phase 1 - Type Checking

The JML type checker forms the first phase of the translator for the reasons explained
below.

Specification Inheritance and Refinement

In general, in JML, a complete specification of a method need not be attached to the
method’s implementation. The specification can exist in an interface that this class imple-
ments (for example, method setColorPoint on lines 33-43 in class BoundedColorPoint
in figure 3.3 implements method setColorPoint on lines 2 and 3 in interface ColorPoint
in figure 3.5), it can be described in another file using refinement (for example, method
setResolution on lines 22-31 in class BoundedColorPoint in figure 3.3 refines method
setResolution on lines 6-9 in file BoundedColorPoint.jml-refined in figure 3.6), and
there can be multiple levels of such a refinement (see Section 2.1.10). Also to enforce be-
havioral subtyping (see Section 2.1.4), a specification of an overriding method in a subclass
needs to be augmented with the specification of the method it is overriding (for example,
method setPoint on lines 11-21 in class BoundedColorPoint in figure 3.3 overrides method
setPoint on lines 6-14 in class Point in figure 3.4). Therefore, the translator also needs
to get the specifications from a superclass. This requires the translator to collect all the
specifications for a method from all of these possible sources.

Specification-only Variables

Also, the specifications in the given file may refer to model variables (for example, variable
resolution on line 25 of class BoundedColorPoint in figure 3.3). These model variables
can be inherited from a superclass, declared in an interface, or declared in a file that this
class refines. The user also needs to specify a represents clause that describes how to con-
struct the value of these model variables (for example, represents clause on line 9 of class
BoundedColorPoint in figure 3.3). To generate the code that checks assertions that refer
to model variables, one needs to collect these declarations along with their corresponding
represents clauses.

Type Checking Original Code

Finally, the code that the translator generates is going to be compiled using a standard
Java compiler. Therefore, as mentioned in Section 1.2, the extra code that the translator
adds should be free of type errors. As the translator makes use of the information stored in
the original source to generate this extra code, it is a good idea to type check the original
code before using it to do any manipulations.
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//@ refine: BoundedColorPoint <- "BoundedColorPoint.jml-refined";
public class BoundedColorPoint extends Point implements ColorPoint {

protected int color;

640;
480;

private int maxx
private int maxy

//Q@ private represents: resolution <- maxx * maxy ;

public void setPoint(int _x, int _y )
/*Q also
@ private_normal_behavior
e requires: _x <= maxx && _y <= maxy;
e ensures: X == _x && y == _y;
ex/
{
X = _X;
y o= -¥s
color = 0;
b
public void setResolution(int _maxx, int _maxy)
/*@ also
@ private_normal_behavior

© requires: resolution >= 0;
e ensures: maxx == _maxx && maxy == _maxy;
ex/

maxx = _maxx;

maxy = _maxy;

public void setColorPoint(int _x, int _y, int _color )
/*Q also
@ private_normal_behavior

e requires: _x <= maxx && _y <= maxy;
e ensures: == _x && y ==_y && color == _color;
ex/
{
X = _X ;
y =¥
color = _color;
b

Figure 3.3: Original Source Code- BoundedColorPoint.java
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public class Point { // 1
/1 2
protected int x; // 3
protected int y; /] 4
/15
protected void setPoint (int _x, int _y) // 6
/*@ protected_normal_behavior /77
Q requires: _x >= 0 && _y >= 0; // 8
Q ensures: X == _x && y == _y; // 9
ex/ // 10
{ // 11
X = _X; /1 12
y =5 // 13
} // 14
} // 15
Figure 3.4: Super class - Point.java
public interface ColorPoint { // 1
public void setColorPoint(int _x, int _y, int _clr ); // 2
//@ requires: _x >= 0 &% _y >= 0 && _clr >= 0; // 3
} // 4

Figure 3.5: Interface - ColorPoint.java
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public class BoundedColorPoint extends Point implements ColorPoint { // 1
//@public model int resolution; /] 2
/13

public void setPoint(int _x, int _y ); // 4
//'5

public void setResolution(int _maxx, int _maxy) ; // 6
protected_normal _behavior /7
requires: _maxx >= 0 && _maxy >=0; // 8
ensures: resolution <= Integer.MAX_VALUE; // 9
// 10

public void setColorPoint(int _x, int _y, int _color ); // 11
} /] 12

Figure 3.6: Refinement - BoundedColorPoint.jml-refined

Keeping these issues in mind we note that the JML type checker already has multiple
phases that traverse the abstract syntax tree to collect type information from all the files
that relate to the given class [Gan98]. These files include the files that this class refines,
superclass of this class, and the interfaces that this class implements. Therefore the JML
type checker is a good place to look for the information that we need for generating the
code besides getting the original code type checked.

But the current design of the type checker just collects the type attributes relevant for
type checking, stores them in a symbol table, type checks the code using the symbol table
and throws the table away. To use the type checker to collect the information we need, the
following modifications have been made:

e Currently, as mentioned above, the type checker stores the type information in a
symbol table in organized as levels of environments (see [Gan98]). An environment
essentially defines a scope — local, class, package, etc., in a file. To get type in-
formation about a particular symbol one has to lookup the symbol table recursively
through these environments. This could be very time consuming. So, the type checker
was modified to attach the type information to the corresponding AST nodes besides
storing it in the symbol table. This annotated AST can then be passed to the later
phases where they can easily extract the type information from the node itself.

o A complete specification of a method is a specification augmented from three possible
sources — superclass, interfaces and any file that this file refines. This requires us
to lookup the superclass to find the method that is being overridden by this method,
lookup the interfaces to find the methods that are being implemented by this method
and lookup the files to find the method that is being refined by this method. After
we find these methods, we need to extract their specifications and augment them
with the current specification of the method. The type checker currently just locates
these methods for us without extracting any information. To store this information,
a method’s type attribute is modified to include a list of definitions of these methods
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that it overrides, implements and refines. This list is updated every time a previous
definition of the method is found. Such a list can be used later to augment the
specifications and then generate the code. Also note that a method overrides another
method if it has same return type, same name, same number of formal parameters,
and all the formal parameters have the same type in the same order. This implies
that actual names of the formal parameters may not match even though the types
match. As these parameters may be referred to by the precondition of a given method,
renaming of formal parameters may be required before actually storing the definition
of overridden method. For example, the formal parameter _clr in the definition of
setColorPoint in interface ColorPoint in figure 3.5 will need to be renamed to
_color.

e The type checker uses the same type of attributes for a model variable and a non-
model variable. But we require a symbol table entry for a model variable to also have
an attribute that contains information from its corresponding represents clause.

After the type checking, the next phase takes the annotated AST and the symbol table
as input, and uses the information to generate the actual code. In case there are any type
errors, the translator does not generate any assertion checking code for the given class.

3.2.2 Phase 2 - Code Generation

This phase walks the annotated AST and modifies the AST to actually generate transformed
code to check the assertions. Before it can do that it needs to take care of another issue.

A class may have spec_public members and private represents clauses®? that de-
scribe some model variables. When another class inherits such a class in Java, it inherits all
the public and protected (and package visible, if both are in the same package) data mem-
bers but not the private ones. But in JML, such a subclass can contain specifications that
refer to spec_public members of a superclass and public or protected model variables with
private represents clause. Moreover, as a complete specification of an overriding method
also includes the specification from the superclass (see Section 2.1.4), the specification bor-
rowed from the superclass can also refer to these variables. Therefore, if we try to generate
code to check augmented assertions for the method in the subclass, the generated code will
end up referring to private data members of the super class.

To get around this visibility problem, such specification-only variables (model and
spec_public) are wrapped inside a protected method in the superclass. That is, this phase
creates one protected method per specification-only variable. For a model variable, the
body of the method is essentially the expression in the represents clause that evaluates
its value. For a spec_public variable, it is the variable itself. Since these methods have
protected visibility, they can be inherited without any visibility errors in Java.

To create such a method, this phase generates a unique name using the class name and
the variable name itself; the return type of the method is based on type of the variable this
method encloses. After creating these methods, this phase actually inserts these methods as
if they are members of this class. For example, for public model variable resolution defined
in BoundedColorPoint.jml-refined, a method __jmlresolutionBoundedColorPoint()
will be created as shown in figure 3.7 using private represents clause on line 9 of class
BoundedColorPoint in figure 3.3.

2A private represents clause implies that the expression that describes a public (or protected) model
variable refers to private members of the class. For details, see Section 2.1.5 and Section 2.1.6.
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protected int __jmlresolutionBoundedColorPoint() {
return (maxx * maxy);

}

Figure 3.7: Model variable method for resolution

Also, to handle all model variables symmetrically, the tool inserts these methods even
for the model variables whose corresponding represents clause has public or protected
visibility. We require these methods for only those model variables which have a represents
clause in the current class, interface that this class implements and the file that this class
refines. In other words, we do not add these methods for the model variables which have a
represents clause in the super class, we assume that the instrumented super class would
contain these methods.

After inserting such methods, phase 2 walks the AST. For every method node it en-
counters, it retrieves the type attribute that was attached in phase 1. This type attribute
contains a list of previous definitions of this method. It, then, extracts the specifications
from the previous definitions and combines them with the current specification. For ex-
ample, augmented precondition expression for method setPoint on lines 11-21 in class
BoundedColorPoint in figure 3.3) will be:

requires: (_x <= maxx && _y <= maxy) || (_x >= 0 && _y >= 0);

Such augmented specification is stored back in the type attribute so that it can be
retrieved later. While augmenting the specification, the AST walker replaces references to
specification-only variables by calls to the corresponding methods. For example, for method
setResolution on lines 22-31 in class BoundedColorPoint in figure 3.3, the precondition
would now be:

requires: (_maxx >= 0 && _maxy >= 0) ||
(__jmlresolutionBoundedColorPoint() >=0);

It also eliminates the specifications that are tagged redundant, meaning that these
specifications just restate some fact.

As it continues to walk the AST, whenever it encounters a method definition with
a method body, it extracts the augmented specifications for that method from the type
attribute.

It then extracts the precondition expression and walks it to check if the assertion expres-
sion is executable. As described in Section 2.1.11, a non-executable expression would be the
one that can not be converted to Java. This is checked by looking for certain keywords in
the assertion expression. If these keywords are present in the assertion expression subtree,
then it is flagged as non-executable.

If the precondition expression is executable, it wraps the code in an if-then block
AST. This block is then inserted at the front the existing method body as mentioned in
Section 2.1.1.

Finally, this modified AST is then walked by a JML unparser. This unparser takes
the AST and unparses it. That is, it generates the equivalent Java code back such that
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parsing the generated Java code gets an AST with same structure back. As this unparser
is an independent component that assumes the AST to have a proper syntactic structure
for Java and JML, care needs to taken while modifying the AST to maintain the structure
of legitimate Java code.

Appendix A shows the code generated for class BoundedColorPoint®. Note how it
retains all of the code from original BoundedColorPoint shown in figure 3.3 while adding
the new code.

In the next chapter we discuss further enhancements to this scheme so as to include
more JML and Java features, to check more types of assertions, etc.

?The formatting of the code is a bit modified in order to fit it in the width of the paper
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Chapter 4

Future Work

This section discusses possible enhancements to the existing tool. Because JML has a
large number of features, all of the features of JML could not be taken into account while
designing this tool.

The tool currently can not handle quantification. As mentioned in Section 2.1.7, to
support quantification, one can try construction of enumeration over sets at run-time.

The amount of context information given to the user (see Section 1.2) is currently
limited. Also this context information relates to the modified source code and can not
effectively give clues about the original location of the assertion. By modifying symbol
table, one can attempt to carry more information about the original location of the failed
assertions. Mainly, the labels of labeled assertions (see Section 2.1.8) can be effective in
giving context information. But note that, in JML, even the subexpressions in an assertion
can have labels. Hence one needs to consider the scope of a label. Therefore, to give fine-
grained context information, one can check the run-time value the subexpressions evaluates
to; if it evaluates to false (and it occurs in a context that needs a true value), then one can
include its label as a part of context information. This can tell the user what was exactly
responsible for the failed assertion.

One can also look at optimizing performance by doing some amount of static analysis.
For example, if an assertion expression evaluates to true at compile-time, the tool should
avoid generating the code. This can result in reduction in both space and time.

One more small enhancement possible is that instead of throwing exception or displaying
error message, the tool could log the failures in a text file so that the user can monitor the
progress remotely.

Finally, the tool could be extended to support more types of assertions like invariants,
general assertions, etc.
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Chapter 5

Related Work

Idea of checking assertions at run-time is not new. In the best-known example, Meyer
[Mey88] pioneered the support for programming by contract in Eiffel. Eiffel takes a prag-
matic approach to run-time assertion checking by not providing features like quantification
due to difficulty in providing run-time support for checking them. Fiffel also follows the
principle of subcontracting. It uses the same rules for augmenting the preconditions. How-
ever, the subcontracting is aided by the lack of inheritance barriers. As FEiffel supports
information hiding through export, independent of inheritance, it is possible for the re-
defined routines to simply inherit the clauses of antecedents. However, Java’s information
hiding semantics is much complex than Eiffel’s. In Java, a private member of the class can
not be referred by the subclass directly. Therefore, in JML, one can not simply restate the
assertion in the subclass as it may refer to private members of the super class. Therefore,
the run-time checker semantically augments the specifications as oppose to just restating
them. Eiffel also lacks support for model-based specifications. The checker handles model-
based specifications in JML to allow the programmers to use assertions to describe the
behavior of interfaces and abstract classes, which is difficult otherwise. Sather [Gea96], is a
new language developed at the International Computer Science Institute (ICSI) at Berke-
ley. It looks similar to Eiffel but has a lot of features that are different than Eiffel. It does
include support for assertions through what they call “Safety Features”. These features
enjoy built-in support but with few restrictions. Sather has interesting limitations — for
example, it insists that the preconditions can not impose conditions on internal state of the
class as the client can not be assumed to be aware of this state. So the client should not be
expected to satisfy the condition that may have internal state description. This implies that
the preconditions are allowed to be stated only in terms of input parameters to the routine.
This eases the specification inheritance as the input parameters to a routine are not hidden
in the subclass. JML, on the other hand, permits one to write the preconditions that use
the internal state of the module and hence the private members. Sather also suffers from
the drawback of not supporting model-based specifications like Eiffel.

Work of Porat and Fertig, ex1C++ [PF95], tries to extend C++ — not just syntacti-
cally but semantically. It tries to take into account behavioral subtyping — inheritance
of assertions. It gives users a lot of flexibility, allowing them to select the extent and the
type of assertion check (for example, preconditions only, all assertions, etc.) using compiler
options. This is a source-level translator which imposes some restrictions: the user can
not control the way recovery is handled, it does not support quantification, and it restricts
the use of assertions to non-static member functions of a class. The Run-time Assertion
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Checker for Java using JML derives a lot of concepts and ideas from this work. The main
difference between the checker and exIC++ is that the checker needs to handle refinement
and has to do type checking before it can generate the code, while the exIC++ does not
have features like refinement and also it assumes correct typing for the specifications. The
checker also provides an option to the user that lets him or her select the way the program
should recover from assertion failures, and it also supports the assertions written for static
functions. Also the checker supports model-based specifications that exIC4++ does not.

Welch and Strong [WS98], in their article, discuss the shortcomings of the C/C++ asser-
tion mechanism through its assert () macro. The article then suggests an extension of this
mechanism through use of exceptions in C++4. However the mechanism is a pure extension
of macro processing. It does not take care of the semantic implications of various features
like behavioral subtyping for subclasses. It just defines a pure macro translator through
a preprocessor. More expressive power, however, is given to the programmer through ad-
ditional macro definitions and by adding a wrapper to the existing assert() macro. The
default assert() macro now is wrapped inside an Assertion exception class. More ex-
pressive power is imparted through additional macros like REQUIRE, ENSURE, INVARIANT,
THERE_EXISTS and so on. It still abides by Meyer’s ([Mey88]) programming by contract
idea. On the other hand, Java language does not have a macro pre-processor. This makes
it difficult to use a simplistic macro translation scheme as is used by this work. Also, as
mentioned, this work does not support subcontracting, which is an essential feature for
object-oriented languages like Java and C4++. The run-time assertion checker is more than
just a source-to-source translator — it enhances the semantics of specification through the
use of inheritance and model-based specifications.

A few third-party tools have been designed to add programming by contract support
to Java; iContract ([iCo00]), by Reliable-Systems is one such tool. iContract is a source
code preprocessor that identifies annotated Javadoc-style assertion expressions that use
tags like @pre, @post, etc., and converts these into assertion check code. It supports only
class invariants, preconditions and postconditions but provides support for quantification
for enumerators, and also propagation of assertions via inheritance. As the assertions are
annotations, they go undetected by a standard Java compiler. iContract also lacks support
for model-based specifications.

Rosenblum [Ros95], in his article, describes a tool called APP, an Annotation Pre-
Processor for C. The work mainly strives to add annotations to the existing C programs
to describe the assertions. This description follows a certain syntactic structure. For all
practical purposes, the work recognizes only four different types of assertions through four
different keywords. The specifications are embedded through annotations that look like
comments to a normal C compiler but help APP identify the specification structure. This
also is a source-level translator that works by using additional variables, buffers, etc. It gives
additional power by using looping syntax to permit existential and universal quantification
over finite domains of any type of data structure (array, linked list etc.). However, the use
of the tool is limited to C. Therefore it is does not need to support subcontracting and
does not need to worry about privacy of variables. It also lacks support for model-based
specifications.
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Conclusions

The important contribution of the “Run-time Assertion Checker” are supporting model-
based specifications that are not provided by most of the specification languages. It also
handles refinement and behavioral subtyping in presence of complex information hiding
semantics of Java. Also the checker is easy to use and gives the user control over generating
and executing the extra code to check the preconditions.
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Appendix A

(Generated Code

The following code is generated by the tool for class BoundedColorPoint in figure 3.3.
(Note: The code is formatted to fit the width of the paper).

//@ refine: BoundedColorPoint <- "BoundedColorPoint.jml-refined";
public class BoundedColorPoint extends Point implements ColorPoint

{

protected int __jmlresolutionBoundedColorPoint()

{

return (maxx * maxy);

protected int color;
private int maxx = 640;
private int maxy = 480;

//Qprivate represents: resolution <- (maxx * maxy);
public void setPoint(int _x, int _y)
/*@
also
private_normal_behavior

requires: ((_x <= maxx) && (_y <= maxy));
ensures: ((x == _x) && (y == _y));

ex/

{
if (edu.iastate.cs.jml.checker.runtime.Checker.isActive(

edu.iastate.cs.jml.checker.runtime.TypeCode.PRECONDITION))
edu.iastate.cs.jml.checker.runtime.Checker.enterAssertionCheck();
boolean __jmlO0;
try {

boolean __jmll ;

try {

boolean __jml3;
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try {

__jml3 = (_x <= maxx);
}
catch(Exception e)

__jml3 = false;

}
boolean __jml4;
try {
__jml4 = (_y <= maxy);
}

catch(Exception e)
__jml4 = false;
}
__jml1l = (__jml3 && __jml4);
}
catch(Exception e) {
-_jmll = false;
}
boolean __jml2;
try {
boolean __jml5;
try {
__jml5 = (_x >= 0);
}
catch (Exception e) {
__jml5 = false;
}
boolean __jml6;
try {
__jmlé = (_y >= 0);
}
catch (Exception e){
__jmlé= false;
}
__jml2 = (__jml5 && __jml6);
}
catch (Exception e) {
__jml2= false;
}
_-jmlo = (__jmli || __jml2);

}

catch (Exception e){
__jmlO= false;

}
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edu.iastate.cs.jml.checker.runtime.Checker.assert(__jmlO0,
edu.iastate.cs.jml.checker.runtime.TypeCode .PRECONDITION,
BoundedColorPoint. java", 16, "BoundedColorPoint", "setPoint"

, null);
edu.iastate.cs.jml.checker.runtime.Checker.exitAssertionCheck();

{
X = _x;
y =¥
color = 0;
}
}
public void setResolution(int _maxx, int _maxy)
/*@
also
private_normal_behavior
requires: (resolution >= 0);
ensures: ((maxx == _maxx) && (maxy == _maxy));
ex/
{

if (edu.iastate.cs.jml.checker.runtime.Checker.isActive(
edu.iastate.cs.jml.checker.runtime.TypeCode.PRECONDITION))
edu.iastate.cs.jml.checker.runtime.Checker.enterAssertionCheck();
boolean __jmlO0;
try {
boolean __jmll ;

try o
__jmll = (__jmlresolutionBoundedColorPoint() >= 0);
}
catch(Exception e) {
-_jmll = false;
}
boolean __jml2;
try {
boolean __jml3;
try {
__jml3 = (_maxx >= 0);
}
catch(Exception e) {
__jml3 = false;
}
boolean __jml4;
try {
__jml4 = (_maxy >= 0);
}
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catch(Exception e) {
__jml4 = false;

}
__jml2 = (__jml3 && __jml4);
}
catch (Exception e) {
__jml2= false;
}
_-jmlo = (__jmli || __jml2);

}

catch (Exception e ){
__jml0O = false;

}

edu.iastate.cs.jml.checker.runtime.Checker.assert(__jmlO0,
edu.iastate.cs.jml.checker.runtime.TypeCode .PRECONDITION,
"BoundedColorPoint. java", 28, "BoundedColorPoint",'setResolution"
, null);
edu.iastate.cs.jml.checker.runtime.Checker.exitAssertionCheck();

{
maxx = _maxx;
maxy = _maxy;
}
}
public void setColorPoint(int _x, int _y, int _color)
/*@
also
private_normal_behavior
requires: ((_x <= maxx) && (_y <= maxy));
ensures: (((x == _x) && (y == _y)) && (color == _color));
ex/
{

if (edu.iastate.cs.jml.checker.runtime.Checker.isActive(
edu.iastate.cs.jml.checker.runtime.TypeCode.PRECONDITION))
edu.iastate.cs.jml.checker.runtime.Checker.enterAssertionCheck();

boolean __jmlO0;
try {
boolean __jmli;

try {
boolean __jml3;
try {
__jml3 = (_x <= maxx);
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}
catch(Exception e)
__jml3 = false;

}
boolean __jml4;
try {
__jml4 = (_y <= maxy);
}

catch(Exception e)
__jml4 = false;

b
__jmltl = (__jml3 && __jml4);
b
catch(Exception e) {
-_jmll = false;
b
boolean __jml2;
try {
boolean __jml5;
try {
boolean __jml7;
try {

__jml7 = (_x >= 0);
}
catch (Exception e) {
__jml7 = false;

b
boolean __jml8;
try {
__jml8 = (_y >= 0);
b

catch (Exception e){
__jml8 = false;
}

__jml5 = (__jml7 && __jml8);

}

catch (Exception e) {
__jml5 = false;

}

boolean __jml6;

try {
__jml6é = (_color >=0);

}

catch (Exception e){
__jmlé= false;

}

__jml2 = (__jml5 && __jml6);
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}
catch (Exception e) {

__jml2= false;
}
_-jmlo = (__jmli || __jml2);
}
catch (Exception e){
__jmlO= false;
}

edu.iastate.cs.jml.checker.runtime.Checker.assert(__jmlO0,
edu.iastate.cs.jml.checker.runtime.TypeCode .PRECONDITION,
"BoundedColorPoint. java", 39, "BoundedColorPoint",'setColorPoint"
, null);
edu.iastate.cs.jml.checker.runtime.Checker.exitAssertionCheck();

{
X = _X;
y = ¥
color = _color;
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