
A Run�time Assertion Checker
for Java using JML

Abhay Bhorkar

TR ������
May ����

Keywords� run�time assertion checking� precondition checking� model�based speci�cation�
behavioral interface speci�cation language� behavioral subtyping� re�nement� formal speci�
�cation languages� Ei�el� JML� Java�

���� CR Categories� D���	
Software Engineering � Requirements�Speci�cations

languages� tools� JML� D����
Software Engineering � Software�Program Veri�cation
 As�
sertion checkers� class invariants� formal methods� programming by contract� reliability�
tools� JML� D����
Software Engineering � Testing and Debugging
 Debugging aids� F���	

Logics and Meanings of Programs � Specifying and Verifying and Reasoning about Programs

 Assertions� invariants� pre� and post�conditions� speci�cation techniques�

Copyright c� Iowa State University� �����
This document is part of JML and is distributed under the terms of the GNU General

Public License as published by the Free Software Foundation� either version �� or �at your
option� any later version�

Department of Computer Science
��� Atanaso� Hall
Iowa State University

Ames� Iowa ���		�	���� USA

A Run�time Assertion Checker for Java using JML

Abhay Bhorkar

���� Atanaso� Hall� Ames� IA ������

abhayb�cs	iastate	edu

May �� ����

Abstract

The Java Modeling Language �JML� is a behavioral interface speci�cation language tailored
for specifying Java modules� This paper describes a source�to�source translation tool that
takes a JML speci�cation and Java source code for a module and produces source code that
checks assertions at run�time� It describes issues unique to JML� including speci�cation�only
variables� re�nement� speci�cation inheritance� and privacy� It also describes the design and
implementation of the translation tool�

Contents

� Introduction �

	�	 Speci�cation and Assertion Checking �
	�� Goals �
	�� Overview of the tool �

� Issues �

��	 JML features �
��	�	 Preconditions
JML keyword� requires� � � � � � � � � � � � � � � � � � �
��	�� Assertion Expressions
JML keyword� assert� � � � � � � � � � � � � � �
��	�� Class Invariants
JML keyword� invariant� � � � � � � � � � � � � � � � �
��	�� Behavioral Subtyping and Speci�cation Inheritance � � � � � � � � � � �
��	�� Speci�cation�only variables
JML keyword� model� depends� and rep�

resents� �
��	�� Privacy of speci�cation �
��	�� Quanti�cation
JML keyword� forall and exists� � � � � � � � � � � � � 	�
��	�� Labeled Assertions
JML keyword�

label� 	�
��	�� Order of subexpressions and Run�time Exceptions � � � � � � � � � � 		
��	�	� Re�nement Syntax
JML keyword� re�nes� � � � � � � � � � � � � � � 		
��	�		 Non�executable assertions � 		

��� Java features � 		
��� User features � 	�

����	 Compile�time options � 	�
����� Run�time options � 	�

��� Other issues � 	�

� Design and Implementation ��

��	 Transformations � 	�
��� The Design of the Translator � 	�

����	 Phase 	 � Type Checking � 	�
����� Phase � � Code Generation �	

� Future Work ��

� Related Work ��

Conclusions ��

Acknowledgements ��

	

A Generated Code �	

�

Chapter �

Introduction

��� Speci�cation and Assertion Checking

The Java Modeling Language �JML�
LBR��� is a model�based behavioral interface spec�
i�cation language �BISL� tailored to Java� It is based on Ei�el
Mey��� and Larch�C��

LC��� �a BISL tailored to C���� It includes features like quanti�cation� speci�cation�only
variables� etc�� that makes it more powerful and expressive than Ei�el� It allows one to
specify Java modules �classes� interface� etc�� in terms of annotated assertion expressions�
Annotations are viewed by a standard Java compiler as comments� while the assertions
describe a property of the module in terms of various program entities like local variables�
instance variables� etc�
Mey���� Assertions state �what� a module should do without
stating �how� it should be done�

As a means of debugging and of partially checking correctness� one would like to see if
a module satis�es these assertions at run�time� However� until recently� few programming
languages supported assertions as a means of run�time program veri�cation
 Ei�el is
one such language� Although Java lacks such support� new third�party tools like iContract

iCo��� are being developed for Java that enable one to specify� and later check� Java
modules using annotated assertions� This document describes one such tool that takes Java
source code� annotated with JML speci�cations� and performs source�to�source translation
to generate an alternate source code� which� when executed� will check if the module adheres
to its speci�cation� This tool is integrated with existing JML type checker
Gan��� and uses
ANTLR
Par����

The current version of the tool only supports checking preconditions� This should not
be a major limitation as it is suggested in
Mey��� pages 	���	��� that as a good pro�
gramming style and to avoid software failure� it is usually enough to check preconditions
without degrading the performance appreciably� The tool can also demonstrate semantics
of behavioral subtyping and use of speci�cation�only variables by checking preconditions�

��� Goals

The goals of source�to�source translation are�

� Any type�correct source code� when translated� should remain type�correct�

� Any code that is being added should not alter the current state of the computation
and thus a�ect the �nal result�

�

� Execution of the translated code with assertion checks turned o� should be identical
to the execution of the original source code� It may reduce the speed of execution�
however�

� The source code added should not give rise to any name space con�icts with the
existing variables� That is� if the new code uses some temporary variables� they
should have fresh names�

� The tool should be able to translate speci�cations that use speci�cation�only variables�

� The tool should work in presence of information hiding and inheritance� That is� one
should be able to inherit the assertions from the superclass in a subclass in presence
of information hiding in Java to enforce subcontracting �see Section ��	����

� The tool should be maintainable given that both JML and Java are being constantly
modi�ed to include more and more language features�

� Compile�time performance of the tool
 speed of translation� although not crucial�
is important� This speed should be kept reasonable by sharing information among
di�erent phases of the tool and by reducing number of passes through the source code�

� In the event of assertion failure� the tool should give enough context information about
the failure� Such context information could include� but is not limited to�

	� Name of the �le that contains this assertion�

�� Name of the class that checks the assertion�

�� Line number of the �le�

�� Name of the method that contains the code� etc�

Note that in presence of behavioral subtyping �Section ��	���� re�nement �Section ��	�	��
and interface implementation �Section ����� the actual assertion expression may be
physically located in some other �le or class� Context information should direct the
user as close to the source of the failure as possible�

The next section gives an overview of the tool
 what it does� how it is used� etc�

��� Overview of the tool

The basic usage of the tool is as shown in the �gure 	�	� The tool has two components�
a translator and a run�time system� The translator is a source�to�source tree transformer
integrated with the JML type checker� It takes a �le �Foo�java� annotated with JML
speci�cations and transforms the generated abstract syntax tree �AST� to produce a �le
with the same name �Foo�java� that contains extra code to perform the assertion checks
at run�time� The new code retains all the old source code so as to retain the functionality
of the original source code� This new� augmented source code is then compiled using a
standard Java compiler and executed with the run�time system� The run�time system helps
the user control the assertion checking� By setting various options provided by the run�time
system� the user can switch o� the execution of the code that checks assertions� modify the

�

Foo.java

JML Type Checker
and

Run-time Assertion Checker
Translator

Foo.java
(instrumented source code)

Java Compiler
javac

Java Interpreter
java

Foo.class

Run-time System
runtime.jar

PRECONDITION
in File: Foo.java line: 10
in Class: Foo Method: foo
FAILED

Figure 	�	� Usage of the tool�

�

types of assertions to be checked� and the way the tool should handle assertion failures� all
without regenerating the code and without recompiling the entire source code��

To make full use of assertion inheritance� the user is required to generate instrumented
source code for the superclass as well� This is a must especially if the the base class refers
to speci�cation�only variables �see Section ��	��� de�ned in the superclass�

In chapters to come� we describe the issues in the tool�s design �Chapter �� and the
design and the implementation �Chapter ��� Chapter � discusses further enhancements to
the tool� We end the discussion by describing related work in Chapter �� Appendix A gives
listing of the translated source code for class BoundedColorPoint shown in �gure ����

�Typically the part of the source that sets these options will need to be recompiled�

�

Chapter �

Issues

This chapter discusses several issues that in�uenced the design the tool�

��� JML features

JML has rich syntax and features that allow one to specify Java modules with a lot of expres�
sive power� This section describes those features that need to be taken into consideration
in designing the run�time assertion checker�

����� Preconditions �JML keyword� requires�

Preconditions are assertions that must be satis�ed when a routine is called� These are
usually expressed in terms of state variables of a module and input parameters to the
routine� These preconditions have to be checked before any of the code of the routine is
executed and after checking the invariants �see Section ��	���� if any� The main function of
the �rst version of the checker is to check preconditions�

����� Assertion Expressions �JML keyword� assert�

General assertion expressions can occur anywhere in the body of a routine� and are written
using assert in JML� They describe assertions over the current state of computation� Such
expressions can be handled in a way similar to preconditions� but their handling will di�er
in following cases�

	� As they can occur anywhere in the text of routine� translating these to source code
will require us to make sure that the code is placed at the appropriate point in the
body of the current method�

�� Expressions described using assert will not be inherited like preconditions�

�� They also require the checker to process the entire source code of the current method
instead of just the method speci�cations�

����� Class Invariants �JML keyword� invariant�

Class invariants express global properties of an instance of a class� which must be preserved
by all the routines of the class
Mey���� These are logically factored out of preconditions
and postconditions of all non�private methods of a module� Note that�

�

	� The e�ective class invariant is the conjunction of all the individual class invariants�
Since individual invariants may be scattered all over the class� they will need to be
collected �rst in order to form an e�ective invariant� This can be done by having a
compiler pass collect all the invariants� Such a pass can be a separate one or it can
be combined with other compiler passes like the pass that does type checking�

�� E�ective preconditions and postconditions are to be formed by the conjunction with
the class invariants� As a conjunction is short�circuited in Java� invariant expression
should be checked before both the preconditions and the postconditions of the public
methods are checked�

����� Behavioral Subtyping and Speci�cation Inheritance

Through behavioral subtyping a BISL forces subcontracting
Mey��� DL���� Syntactically
subtyping implies that a subtype object should be able to replace a super�type object in a
module without the client getting any type errors� Behavioral subtyping adds an additional
constraint that such a replacement should not produce an unexpected behavior for the client
that is expecting the super�type�s behavior� This implies that any method rede�ned in the
derived class� has the responsibility of carrying out the contract de�ned by the original
method in the super class�

The rule of subcontracting� applied to inheritance� is stated in
Mey��� page ���� as�

Assertion redefinition rule � Let r be a routine in class A and s a rede��
nition of r in a descendant of A� or an e�ective de�nition of r if r was deferred�
Then pre

s
must be weaker than or equal to pre

r
� and post

s
must be stronger

than or equal to postr�

This rule is viewed to be stronger than necessary in JML� Therefore� JML uses following
inheritance semantics �see
DL���� instead of the one given above�

E�ective precondition for a rede�ned routine is the disjunction of existing pre�
condition and all preconditions existing in all previous de�nitions of the routine�
E�ective class invariants are formed by conjunction� E�ective postconditions
are formed using following rule�

� prer ��� postr � �� �pres ��� posts�

When inheriting the speci�cations the base class may not have any assertions at all� In
such a case� the precondition of the super class method is considered to be true and hence
after combining� the subclass method has precondition true�

����	 Speci�cation
only variables �JML keyword� model� depends� and
represents�

Speci�cation�only variables are the basis of model�based speci�cation of abstract data types�
These are the variables that are used to describe the model that is being implemented by
a concrete variable�s�� and are usually accompanied by an abstraction function� In JML�
this abstraction function is described using a Java expression in a represents clause that
evaluates to yield the speci�cation�only variable� Such a description will look like�

�

represents� model var �� expression �

The steps that will be required are�

	� For every model variable encountered� record the name and the type of the variable
in the type checker symbol table�

�� For every represents clause� lookup the symbol table for a corresponding model vari�
able entry�

�a� If an entry is found� note the abstraction function that is to the right of �� in
the represents clause�

�b� If entry is not found� just make an entry with this abstraction function for the
model variable�

����� Privacy of speci�cation

Privacy of speci�cation enhances behavioral subtyping semantics for JML �see Section ��	����
By using this semantics� individual speci�cations� for example� invariants� can be declared
as public� protected� or private or it can have the default visibility �i�e�� a package vis�
ibility�� Semantically it means that a public or protected speci�cation should not have
reference to private class members� and so on�

When translating code in presence of privacy of speci�cations we need to note the
following�

	� Make sure that a protected speci�cation does not have reference to any private

data member or function and a public speci�cation does not refer to any protected
or private data member�

�� Speci�cations tagged private will not be subcontracted by a subclass and speci�ca�
tions with default visibility will not be subcontracted by a subclass that is not in the
same package as the super class�

�� A private model variable or data member may be declared spec public for speci�
�cation purposes� While semantically� use of such a member is valid in a public or
a protected assertion� when such an assertion is inherited in subclass� it will refer
to the private member of the super class� Therefore� references to such a member
will need to be replaced by a call to a new protected method added to the class to
enclose reference to this member� The protected method will be inherited by the
subclass and therefore can be referred by the inherited speci�cation in the subclass�

�� A speci�cation�only �or model� variable �see Section ��	��� can be represented by
expression that contains reference to private members of the class� Similar to the
case above� a wrapper method with protected visibility will need to be added that
evaluates this expression and returns its value�

�� In presence of Java information hiding it may not be possible to just inherit and conjoin
�or disjoin� the text of assertion� If one just inherits the text� the text may refer to
the private members of the super class� Such translation will result in compilation
errors in the translated code� So the �nal scheme needs to �nd a way to semantically
augment the assertions without disturbing the visibility�

�

����
 Quanti�cation �JML keyword� forall and exists�

JML increases expressive power of assertions by incorporating universal and existential
quanti�ers� The following issues need to be considered while tying to translate the quanti�
�ers to suitable Java code�

	� If the quanti�cation is over an in�nite domain� we will need to map it to a bounded
domain in Java depending on the type of domain� For example� an in�nite domain
of integers can be mapped using Integer	MIN
VALUE and Integer	MAX
VALUE� That
is� a quanti�cation given by�

�forall �int i� i � � ��� Math	pow�i
�� � �

is over in�nite domain of positive integers that can be translated to look like�

�forall �int i� i � � �� i �� Integer	MAX VALUE ��� Math	pow�i
�� � �

But such a mapping may not be so obvious for complex data types� especially the
user�de�ned ones�

�� In case of bounded quanti�cation� JML syntax does not enforce any order on the
bounding predicate� That is� a bounding predicate over the domain of integers may
be written as �lower bound � var �� var � upper bound� or �upper bound � var
�� var � lower bound�� For example� a bounded quanti�cation using integers can be
written in JML as�

�forall �int i� � �� i �� i � list	size�� ��� list	elementAt�i��� null

or as �

�forall �int i� i � list	size�� �� � �� i ��� list	elementAt�i��� null

where list is an object of type java	util	Vector� To construct an equivalent loop
this order will have to be taken into account�

A reasonable scheme could be to construct a lazy enumeration of an object store �see

KC���� using the type of the object and the bounding predicate� A lazy enumeration
would be the one in which an object will not be constructed until its value is asked� it will
be constructed only when the enumeration is asked to give the next element of the domain�
This scheme still requires the enumeration to know the upper and the lower bounds in order
to terminate normally�

����� Labeled Assertions �JML keyword�
label�

Like in Ei�el� an expression in JML can be labeled for readability� This label can give
contextual information in the event of failure� For example� one can print the label �if any�
of the failed assertion in the error message� Therefore we should record and later use the
label as a part of information to be displayed in the event of assertion failure�

	�

����� Order of subexpressions and Run
time Exceptions

In JML� order of subexpressions in a predicate is immaterial� That is� a predicate can be
written as ���x�y� � �� k �y 		
�� or ��y 		
� k ��x�y� � ���� Translated code for
this predicate would� however� impose an order because of short�circuited operator �k� in
Java� This creates a problem in presence of code that may throw a run�time exception�
For example� in the predicate mentioned above� if �y ��� subexpression �x�y� will throw
DivideByZero exception at run�time in Java� Because of such cases� the exception needs to
be caught and the value of the subexpression be set to false� so that when these expressions
are evaluated and combined� the assertion evaluates without throwing any exceptions� This
scheme also eliminates the order imposed by Java as both of the expressions given above
will evaluate to true if �y ���

������ Re�nement Syntax �JML keyword� re�nes�

JML permits a user to write speci�cations for a given module in several �les� Use of such
separate �les allows the user to separate the concrete implementation of the module from
its speci�cations� A refines clause in the corresponding Java �le that implements the
module tells the reader where to �nd its speci�cations
LBR��� Page ��� Such a re�nement
can be done recursively using more than one �le� where one �le re�nes the other and so on�
Therefore� a complete speci�cation of the given module needs to be obtained by merging
all the individual speci�cations from these �les�

������ Non
executable assertions

Until now� we discussed various JML features and how they may be translated into to Java
syntax� However� there are a lot of features that do not lend themselves easily to such
translation� Assertions that use such features will essentially be considered non�executable�
Non�executable assertions are the speci�cation expressions that can not be translated to
Java due to various factors�

	� Presence of certain JML features in the assertion� For example� quanti�ers �see Sec�
tion ��	��� will be considered non�executable in the �rst version of the tool� implying
that any assertion with keywords forall or exists will be non�executable�

�� If assertion expressions contain subexpressions that are non�executable� then the
subexpression will be considered as �not
specified�

�� A non�executable assertion will be considered �not
specified for the purpose of
inheritance�

In the next section� we discuss some features of Java that require attention while during
the process of translation�

��� Java features

This refers to Java language features and constructs that require special consideration�

Threads In Java� a multi�threaded program may spawn a number of threads of execution�
These threads share the instance variables of the class but have di�erent �ow�of�
control� This implies that each thread can invoke methods independently� It also

		

means that each thread will check speci�cations for each method separately� So the
generated source code needs to be thread�aware �re�entrant��

Interfaces Interfaces are Java modules that can have only static data members and
method prototypes� Actual implementation of the methods have to be in a class that
implements the particular interface� But� in JML� an interface method may have
speci�cations that need to be satis�ed by the implementation of that method� So
we need to combine the speci�cations written for an interface with that of the class�
which implements the interface� before generating the assertion checking code for the
class�

Name con
icts Java allows one to de�ne packages so that developers can avoid nam�
ing con�icts� Files in a package need to reside in a particular subdirectory of path
reachable through CLASSPATH environmental variable� Also all the public classes and
interfaces need to be in �les with the same name� with a ��java� extension� When the
tool inserts new code in a class� the combined code needs to be written to a �le and
then compiled using a standard Java compiler� This new �le still needs to be in the
same package and have the same �le name so that it can be compiled and used by
others� This results in naming con�ict for the new source code�

Overwriting an original �le is one way to avoid naming con�icts� But the new �le may
be highly unstructured as it is required to combine and carry a lot of information

for example� invariants from a super class or interface the class implements� One way
to avoid overwriting� is to create a source code library structure similar to that of the
existing code� By manipulating the CLASSPATH environment variable one may be able
switch between the new and the old code�

��� User features

As mentioned in Chapter 	� a user is expected to use this tool to translate speci�cations
written in JML into Java source code that will perform checks at run�time� Such a trans�
lation may add a lot of source code into the existing program� This may not only increase
the size of the code but also slow its execution considerably� Therefore� the user needs to
have �ne control on the process of translation of the code as well as on the process of run�
time checking� This control is provided through various options to the user� This section
discusses various issues that need to be considered in order to provide such support�

����� Compile
time options

These are the options that the user requires to control the process of translation� These
options will mainly a�ect the size of the code that will be generated upon translation� The
following options are considered to be useful�

� The user should be able to generate the code only for selected types of assertions
�preconditions� invariants� etc��� By default� the tool will generate the code only for
preconditions�

� The user should be able to get warnings when the tool is not able to generate the
code for a given speci�cation� for example� if the speci�cation is non�executable �see
Section ��	�		�� Such a warning should have enough context information to help the

	�

user identify the cause so that he or she may take measures to correct the problem if
desired�

����� Run
time options

Run�time options let the user control the actual assertion checking process at run�time�
These options can a�ect the speed of execution of the translated code� To be able to use
some of the options at the run�time� the user must �rst generate the code with proper
options �as described in previous section� at the compile�time� For example� for checking
preconditions at the run�time� option to generate code for preconditions or all assertions
must be used at the compile�time� The following options can give good control at run�time�

� The user should be able to turn execution of the code that checks assertions on and
o��

� There are several ways to recover from failure when a particular assertion is not
satis�ed� Some of those include giving error messages� throwing run�time exception�
and halting� The tool will have to provide such di�erent ways for recovery and an
option to the user to select one of them�

Next section discusses other issues that in�uenced the design of the tool�

��� Other issues

Assertion expressions may call other methods of the same or a di�erent class� These methods
themselves may have assertion checking code� Such a recursion may give rise to circular
dependencies� therefore such recursion should be avoided
Mey��� pages 	���	���� To avoid
this problem� assertion checking needs to be turned o� once the execution is inside the code
that is checking assertion expression for a given method� This means that the execution of
the assertion checking code for the methods invoked as a part of assertion checking code
will be turned o��

In the next chapter we discuss the design and implementation of the tool�

	�

Chapter �

Design and Implementation

This chapter discusses the design of the tool� The design is mainly based on issues discussed
in Chapter �� In Section ��	 we discuss the transformations the original source code goes
through and then in Section ��� we discuss the design of the translator that does the
transformations�

��� Transformations

In this section we give a line�by�line explanation of code transformations using the examples
in �gures ��	 and ���� where �gure ��	 is the original source code and �gure ��� is the
transformed code�

Consider �gure ���� Lines 	�� contain the class de�nition� the method header� and the
method speci�cation and are identical to lines 	�� in the original source code �see �gure ��	��
Lines ���� are the ones that are added by the translator to check the precondition of the
method isqrt at run�time� while the block spanning lines ����� is the original body of the
method isqrt�

The translator converts the precondition into an if�then block on lines ����� This block
is inserted before the original method body so that the precondition is checked before the
method is executed� The condition in the if statement is a call to isActive�� �lines � and
�� to check if this code should indeed be executed at run�time� The method isActive��

checks if�

	� this type of assertion is allowed to be checked at run�time� This is determined by pass�
ing the type of this assertion �PRECONDITION on line �� to isActive��� isActive��
checks if a run�time system option� called an assertion level� permits us to check this
type of assertion� Any assertions above assertion level should not be checked� For
example� a precondition can be checked if the level is PRECONDITIONS ONLY �implies
that check only preconditions� or ALL �implies that check all types of assertions�� but
checking a postcondition requires the level to be set to the later�

�� the call to this method at run�time is part of assertion checking code of any other
method for the same thread of execution� If yes� then this code should not be executed
to avoid recursions as described in Section ����

Possible recursion is checked by the run�time system by maintaining a per�thread �ag
in a hashtable� This table maps a Thread object to a boolean �ag� Whenever a
thread enters the code to check assertions in a method for the �rst time� an entry is

	�

public class IntMathOps � �� �

public static int isqrt�int y� �� �

��� normal
behavior �� �

� requires� y �� �� �� �

� ensures� �result � �result �� y �� �

� �� y � ��result � �� � ��result � ��� �� �

��� �� �

� return �int� Math	sqrt�y�� � �� �

� �� �

Figure ��	� Original source code� �Adapted from
LBR����

created in this table and is set to false� a call to enterAssertionCheck�� on line 	�
and 		 does this� Whenever the thread tries to execute assertion check code for any
other method while inside the �rst assertion check code� it checks the value of this
�ag in the table� If the �ag is set to false then the assertions are not checked for this
method� On exiting the �rst assertion check code� a call to exitAssertionCheck��

�line �� and ��� destroys the �ag�

The entry in the table is destroyed to keep the size of the table under control� as
a large number of threads can exist and can be created at any time in the system�
Also the table will be required to be cleaned up time�to�time by deleting entries
corresponding to the terminated threads� To avoid the overhead of cleaning up� the
entry corresponding to a thread object is created and destroyed on�the��y�

As we continue to describe �gure ���� lines 	��	� actually evaluate the precondition
expression described by the requires clause on line �� The value of the expression is
assigned to a temporary boolean variable� jml�� The whole evaluation is enclosed in a
try�catch block to recover from any runtime exceptions thrown by this code so that it also
takes care of the order of evaluation �see Section ��	���� The value of this variable along with
some context information �in this order� like the type of the assertion
 PRECONDITION�
the name of the �le
 �IntMathOps�java�� the line number of the assertion clause in the
original de�nition
 �� the name of the class
 �IntMathOps�� and the name of the method

 �isqrt� are passed to a method assert��� �lines 	������ This method checks the value
of the variable� If it is false� implying a failed assertion� then assert�� combines the
context information to create an error message and throws AssertionException�� at run�
time� The user can change the failure recovery mechanism to get an error message displayed
instead of an assertion being thrown�

In the next section� we describe the design of the translator that actually transforms
the code�

�The last parameter to assert�� is currently null and is reserved for future enhancements to include
support for label information��see Section ������

	�

public class IntMathOps � ���

public static int isqrt�int y� ���

��� normal
behavior ���

requires� �y �� ��� ���

ensures� ����result � �result� �� y� ���

�� �y � ���result � �� � ��result � ������ ���

��� ���

�

if �edu	iastate	cs	jml	checker	runtime	Checker	isActive� ���

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION� ���

��

edu	iastate	cs	jml	checker	runtime	Checker	 ����

enterAssertionCheck��� ����

boolean

jml�� ����

try � ����

jml� � �y �� ��� ����

� ����

catch�Exception e� � ����

jml� � false� ����

� ����

edu	iastate	cs	jml	checker	runtime	Checker	assert� ����

jml�
 ����

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION
����

�IntMathOps	java�
 �
 �IntMathOps�
 �isqrt�
 null �� ����

edu	iastate	cs	jml	checker	runtime	Checker	 ����

exitAssertionCheck��� ����

�

� ����

return �int �Math	sqrt�y�� ����

� ����

�

�

Figure ���� Generated source code�

	�

��� The Design of the Translator

This section describes various phases of the translator and interaction between these phases�
This design discussion assumes the translation of only preconditions although the design
can be extended to include other types of assertions�

For describing the design� we use the class BoundedColorPoint ��gure ���� as an exam�
ple� This class extends class Point ��gure ���� while implementing interface ColorPoint
��gure ���� and re�ning �le BoundedColorPoint	jml�refined ��gure �����

����� Phase �
 Type Checking

The JML type checker forms the �rst phase of the translator for the reasons explained
below�

Speci�cation Inheritance and Re�nement

In general� in JML� a complete speci�cation of a method need not be attached to the
method�s implementation� The speci�cation can exist in an interface that this class imple�
ments �for example� method setColorPoint on lines ����� in class BoundedColorPoint
in �gure ��� implements method setColorPoint on lines � and � in interface ColorPoint
in �gure ����� it can be described in another �le using re�nement �for example� method
setResolution on lines ����	 in class BoundedColorPoint in �gure ��� re�nes method
setResolution on lines ��� in �le BoundedColorPoint	jml�refined in �gure ����� and
there can be multiple levels of such a re�nement �see Section ��	�	��� Also to enforce be�
havioral subtyping �see Section ��	���� a speci�cation of an overriding method in a subclass
needs to be augmented with the speci�cation of the method it is overriding �for example�
method setPoint on lines 		��	 in class BoundedColorPoint in �gure ��� overrides method
setPoint on lines ��	� in class Point in �gure ����� Therefore� the translator also needs
to get the speci�cations from a superclass� This requires the translator to collect all the
speci�cations for a method from all of these possible sources�

Speci�cation�only Variables

Also� the speci�cations in the given �le may refer to model variables �for example� variable
resolution on line �� of class BoundedColorPoint in �gure ����� These model variables
can be inherited from a superclass� declared in an interface� or declared in a �le that this
class re�nes� The user also needs to specify a represents clause that describes how to con�
struct the value of these model variables �for example� represents clause on line � of class
BoundedColorPoint in �gure ����� To generate the code that checks assertions that refer
to model variables� one needs to collect these declarations along with their corresponding
represents clauses�

Type Checking Original Code

Finally� the code that the translator generates is going to be compiled using a standard
Java compiler� Therefore� as mentioned in Section 	��� the extra code that the translator
adds should be free of type errors� As the translator makes use of the information stored in
the original source to generate this extra code� it is a good idea to type check the original
code before using it to do any manipulations�

	�

��� refine� BoundedColorPoint �� �BoundedColorPoint	jml�refined�� �� �

public class BoundedColorPoint extends Point implements ColorPoint � �� �

�� �

protected int color� �� �

�� �

private int maxx � ���� �� �

private int maxy � ���� �� �

�� �

��� private represents� resolution �� maxx � maxy � �� �

�� ��

public void setPoint�int
x
 int
y � �� ��

��� also �� ��

� private
normal
behavior �� ��

� requires�
x �� maxx ��
y �� maxy� �� ��

� ensures� x ��
x �� y ��
y� �� ��

��� �� ��

� �� ��

x �
x� �� ��

y �
y� �� ��

color � �� �� ��

� �� ��

public void setResolution�int
maxx
 int
maxy� �� ��

��� also �� ��

� private
normal
behavior �� ��

� requires� resolution �� �� �� ��

� ensures� maxx ��
maxx �� maxy ��
maxy� �� ��

��� �� ��

� �� ��

maxx �
maxx� �� ��

maxy �
maxy� �� ��

� �� ��

�� ��

public void setColorPoint�int
x
 int
y
 int
color � �� ��

��� also �� ��

� private
normal
behavior �� ��

� requires�
x �� maxx ��
y �� maxy� �� ��

� ensures� x ��
x �� y ��
y �� color ��
color� �� ��

��� �� ��

� �� ��

x �
x � �� ��

y �
y � �� ��

color �
color� �� ��

� �� ��

� �� ��

Figure ���� Original Source Code� BoundedColorPoint�java

	�

public class Point � �� �

�� �

protected int x� �� �

protected int y� �� �

�� �

protected void setPoint �int
x
 int
y� �� �

��� protected
normal
behavior �� �

� requires�
x �� � ��
y �� �� �� �

� ensures� x ��
x �� y ��
y� �� �

��� �� ��

� �� ��

x �
x� �� ��

y �
y� �� ��

� �� ��

� �� ��

Figure ���� Super class � Point�java

public interface ColorPoint � �� �

public void setColorPoint�int
x
 int
y
 int
clr �� �� �

��� requires�
x �� � ��
y �� � ��
clr �� �� �� �

� �� �

Figure ���� Interface � ColorPoint�java

	�

public class BoundedColorPoint extends Point implements ColorPoint � �� �

���public model int resolution� �� �

�� �

public void setPoint�int
x
 int
y �� �� �

�� �

public void setResolution�int
maxx
 int
maxy� � �� �

protected
normal
behavior �� �

requires�
maxx �� � ��
maxy ���� �� �

ensures� resolution �� Integer	MAX
VALUE� �� �

�� ��

public void setColorPoint�int
x
 int
y
 int
color �� �� ��

� �� ��

Figure ���� Re�nement � BoundedColorPoint�jml�re�ned

Keeping these issues in mind we note that the JML type checker already has multiple
phases that traverse the abstract syntax tree to collect type information from all the �les
that relate to the given class
Gan���� These �les include the �les that this class re�nes�
superclass of this class� and the interfaces that this class implements� Therefore the JML
type checker is a good place to look for the information that we need for generating the
code besides getting the original code type checked�

But the current design of the type checker just collects the type attributes relevant for
type checking� stores them in a symbol table� type checks the code using the symbol table
and throws the table away� To use the type checker to collect the information we need� the
following modi�cations have been made�

� Currently� as mentioned above� the type checker stores the type information in a
symbol table in organized as levels of environments �see
Gan����� An environment
essentially de�nes a scope
 local� class� package� etc�� in a �le� To get type in�
formation about a particular symbol one has to lookup the symbol table recursively
through these environments� This could be very time consuming� So� the type checker
was modi�ed to attach the type information to the corresponding AST nodes besides
storing it in the symbol table� This annotated AST can then be passed to the later
phases where they can easily extract the type information from the node itself�

� A complete speci�cation of a method is a speci�cation augmented from three possible
sources
 superclass� interfaces and any �le that this �le re�nes� This requires us
to lookup the superclass to �nd the method that is being overridden by this method�
lookup the interfaces to �nd the methods that are being implemented by this method
and lookup the �les to �nd the method that is being re�ned by this method� After
we �nd these methods� we need to extract their speci�cations and augment them
with the current speci�cation of the method� The type checker currently just locates
these methods for us without extracting any information� To store this information�
a method�s type attribute is modi�ed to include a list of de�nitions of these methods

��

that it overrides� implements and re�nes� This list is updated every time a previous
de�nition of the method is found� Such a list can be used later to augment the
speci�cations and then generate the code� Also note that a method overrides another
method if it has same return type� same name� same number of formal parameters�
and all the formal parameters have the same type in the same order� This implies
that actual names of the formal parameters may not match even though the types
match� As these parameters may be referred to by the precondition of a given method�
renaming of formal parameters may be required before actually storing the de�nition
of overridden method� For example� the formal parameter clr in the de�nition of
setColorPoint in interface ColorPoint in �gure ��� will need to be renamed to
color�

� The type checker uses the same type of attributes for a model variable and a non�
model variable� But we require a symbol table entry for a model variable to also have
an attribute that contains information from its corresponding represents clause�

After the type checking� the next phase takes the annotated AST and the symbol table
as input� and uses the information to generate the actual code� In case there are any type
errors� the translator does not generate any assertion checking code for the given class�

����� Phase �
 Code Generation

This phase walks the annotated AST and modi�es the AST to actually generate transformed
code to check the assertions� Before it can do that it needs to take care of another issue�

A class may have spec public members and private represents clauses� that de�
scribe some model variables� When another class inherits such a class in Java� it inherits all
the public and protected �and package visible� if both are in the same package� data mem�
bers but not the private ones� But in JML� such a subclass can contain speci�cations that
refer to spec public members of a superclass and public or protected model variables with
private represents clause� Moreover� as a complete speci�cation of an overriding method
also includes the speci�cation from the superclass �see Section ��	���� the speci�cation bor�
rowed from the superclass can also refer to these variables� Therefore� if we try to generate
code to check augmented assertions for the method in the subclass� the generated code will
end up referring to private data members of the super class�

To get around this visibility problem� such speci�cation�only variables �model and
spec public� are wrapped inside a protected method in the superclass� That is� this phase
creates one protected method per speci�cation�only variable� For a model variable� the
body of the method is essentially the expression in the represents clause that evaluates
its value� For a spec public variable� it is the variable itself� Since these methods have
protected visibility� they can be inherited without any visibility errors in Java�

To create such a method� this phase generates a unique name using the class name and
the variable name itself� the return type of the method is based on type of the variable this
method encloses� After creating these methods� this phase actually inserts these methods as
if they are members of this class� For example� for public model variable resolution de�ned
in BoundedColorPoint	jml�refined� a method jmlresolutionBoundedColorPoint��

will be created as shown in �gure ��� using private represents clause on line � of class
BoundedColorPoint in �gure ����

�A private represents clause implies that the expression that describes a public �or protected� model
variable refers to private members of the class� For details� see Section ����� and Section ������

�	

protected int

jmlresolutionBoundedColorPoint�� �

return �maxx � maxy��

�

Figure ���� Model variable method for resolution

Also� to handle all model variables symmetrically� the tool inserts these methods even
for the model variables whose corresponding represents clause has public or protected
visibility� We require these methods for only those model variables which have a represents
clause in the current class� interface that this class implements and the �le that this class
re�nes� In other words� we do not add these methods for the model variables which have a
represents clause in the super class� we assume that the instrumented super class would
contain these methods�

After inserting such methods� phase � walks the AST� For every method node it en�
counters� it retrieves the type attribute that was attached in phase 	� This type attribute
contains a list of previous de�nitions of this method� It� then� extracts the speci�cations
from the previous de�nitions and combines them with the current speci�cation� For ex�
ample� augmented precondition expression for method setPoint on lines 		��	 in class
BoundedColorPoint in �gure ���� will be�

requires� �
x �� maxx ��
y �� maxy� �� �
x �� � ��
y �� ���

Such augmented speci�cation is stored back in the type attribute so that it can be
retrieved later� While augmenting the speci�cation� the AST walker replaces references to
speci�cation�only variables by calls to the corresponding methods� For example� for method
setResolution on lines ����	 in class BoundedColorPoint in �gure ���� the precondition
would now be�

requires� �
maxx �� � ��
maxy �� �� ��

�

jmlresolutionBoundedColorPoint�� �����

It also eliminates the speci�cations that are tagged redundant� meaning that these
speci�cations just restate some fact�

As it continues to walk the AST� whenever it encounters a method de�nition with
a method body� it extracts the augmented speci�cations for that method from the type
attribute�

It then extracts the precondition expression and walks it to check if the assertion expres�
sion is executable� As described in Section ��	�		� a non�executable expression would be the
one that can not be converted to Java� This is checked by looking for certain keywords in
the assertion expression� If these keywords are present in the assertion expression subtree�
then it is �agged as non�executable�

If the precondition expression is executable� it wraps the code in an if�then block
AST� This block is then inserted at the front the existing method body as mentioned in
Section ��	�	�

Finally� this modi�ed AST is then walked by a JML unparser� This unparser takes
the AST and unparses it� That is� it generates the equivalent Java code back such that

��

parsing the generated Java code gets an AST with same structure back� As this unparser
is an independent component that assumes the AST to have a proper syntactic structure
for Java and JML� care needs to taken while modifying the AST to maintain the structure
of legitimate Java code�

Appendix A shows the code generated for class BoundedColorPoint�� Note how it
retains all of the code from original BoundedColorPoint shown in �gure ��� while adding
the new code�

In the next chapter we discuss further enhancements to this scheme so as to include
more JML and Java features� to check more types of assertions� etc�

�The formatting of the code is a bit modi	ed in order to 	t it in the width of the paper

��

Chapter �

Future Work

This section discusses possible enhancements to the existing tool� Because JML has a
large number of features� all of the features of JML could not be taken into account while
designing this tool�

The tool currently can not handle quanti�cation� As mentioned in Section ��	��� to
support quanti�cation� one can try construction of enumeration over sets at run�time�

The amount of context information given to the user �see Section 	��� is currently
limited� Also this context information relates to the modi�ed source code and can not
e�ectively give clues about the original location of the assertion� By modifying symbol
table� one can attempt to carry more information about the original location of the failed
assertions� Mainly� the labels of labeled assertions �see Section ��	��� can be e�ective in
giving context information� But note that� in JML� even the subexpressions in an assertion
can have labels� Hence one needs to consider the scope of a label� Therefore� to give �ne�
grained context information� one can check the run�time value the subexpressions evaluates
to� if it evaluates to false �and it occurs in a context that needs a true value�� then one can
include its label as a part of context information� This can tell the user what was exactly
responsible for the failed assertion�

One can also look at optimizing performance by doing some amount of static analysis�
For example� if an assertion expression evaluates to true at compile�time� the tool should
avoid generating the code� This can result in reduction in both space and time�

One more small enhancement possible is that instead of throwing exception or displaying
error message� the tool could log the failures in a text �le so that the user can monitor the
progress remotely�

Finally� the tool could be extended to support more types of assertions like invariants�
general assertions� etc�

��

Chapter �

Related Work

Idea of checking assertions at run�time is not new� In the best�known example� Meyer

Mey��� pioneered the support for programming by contract in Ei�el� Ei�el takes a prag�
matic approach to run�time assertion checking by not providing features like quanti�cation
due to di!culty in providing run�time support for checking them� Ei�el also follows the
principle of subcontracting� It uses the same rules for augmenting the preconditions� How�
ever� the subcontracting is aided by the lack of inheritance barriers� As Ei�el supports
information hiding through export� independent of inheritance� it is possible for the re�
de�ned routines to simply inherit the clauses of antecedents� However� Java�s information
hiding semantics is much complex than Ei�el�s� In Java� a private member of the class can
not be referred by the subclass directly� Therefore� in JML� one can not simply restate the
assertion in the subclass as it may refer to private members of the super class� Therefore�
the run�time checker semantically augments the speci�cations as oppose to just restating
them� Ei�el also lacks support for model�based speci�cations� The checker handles model�
based speci�cations in JML to allow the programmers to use assertions to describe the
behavior of interfaces and abstract classes� which is di!cult otherwise� Sather
Gea���� is a
new language developed at the International Computer Science Institute �ICSI� at Berke�
ley� It looks similar to Ei�el but has a lot of features that are di�erent than Ei�el� It does
include support for assertions through what they call �Safety Features�� These features
enjoy built�in support but with few restrictions� Sather has interesting limitations
 for
example� it insists that the preconditions can not impose conditions on internal state of the
class as the client can not be assumed to be aware of this state� So the client should not be
expected to satisfy the condition that may have internal state description� This implies that
the preconditions are allowed to be stated only in terms of input parameters to the routine�
This eases the speci�cation inheritance as the input parameters to a routine are not hidden
in the subclass� JML� on the other hand� permits one to write the preconditions that use
the internal state of the module and hence the private members� Sather also su�ers from
the drawback of not supporting model�based speci�cations like Ei�el�

Work of Porat and Fertig� exlC��
PF���� tries to extend C��
 not just syntacti�
cally but semantically� It tries to take into account behavioral subtyping
 inheritance
of assertions� It gives users a lot of �exibility� allowing them to select the extent and the
type of assertion check �for example� preconditions only� all assertions� etc�� using compiler
options� This is a source�level translator which imposes some restrictions� the user can
not control the way recovery is handled� it does not support quanti�cation� and it restricts
the use of assertions to non�static member functions of a class� The Run�time Assertion

��

Checker for Java using JML derives a lot of concepts and ideas from this work� The main
di�erence between the checker and exlC�� is that the checker needs to handle re�nement
and has to do type checking before it can generate the code� while the exlC�� does not
have features like re�nement and also it assumes correct typing for the speci�cations� The
checker also provides an option to the user that lets him or her select the way the program
should recover from assertion failures� and it also supports the assertions written for static
functions� Also the checker supports model�based speci�cations that exlC�� does not�

Welch and Strong
WS���� in their article� discuss the shortcomings of the C�C�� asser�
tion mechanism through its assert�� macro� The article then suggests an extension of this
mechanism through use of exceptions in C��� However the mechanism is a pure extension
of macro processing� It does not take care of the semantic implications of various features
like behavioral subtyping for subclasses� It just de�nes a pure macro translator through
a preprocessor� More expressive power� however� is given to the programmer through ad�
ditional macro de�nitions and by adding a wrapper to the existing assert�� macro� The
default assert�� macro now is wrapped inside an Assertion exception class� More ex�
pressive power is imparted through additional macros like REQUIRE� ENSURE� INVARIANT�
THERE EXISTS and so on� It still abides by Meyer�s �
Mey���� programming by contract
idea� On the other hand� Java language does not have a macro pre�processor� This makes
it di!cult to use a simplistic macro translation scheme as is used by this work� Also� as
mentioned� this work does not support subcontracting� which is an essential feature for
object�oriented languages like Java and C��� The run�time assertion checker is more than
just a source�to�source translator
 it enhances the semantics of speci�cation through the
use of inheritance and model�based speci�cations�

A few third�party tools have been designed to add programming by contract support
to Java� iContract �
iCo����� by Reliable�Systems is one such tool� iContract is a source
code preprocessor that identi�es annotated Javadoc�style assertion expressions that use
tags like �pre� �post� etc�� and converts these into assertion check code� It supports only
class invariants� preconditions and postconditions but provides support for quanti�cation
for enumerators� and also propagation of assertions via inheritance� As the assertions are
annotations� they go undetected by a standard Java compiler� iContract also lacks support
for model�based speci�cations�

Rosenblum
Ros���� in his article� describes a tool called APP� an Annotation Pre�
Processor for C� The work mainly strives to add annotations to the existing C programs
to describe the assertions� This description follows a certain syntactic structure� For all
practical purposes� the work recognizes only four di�erent types of assertions through four
di�erent keywords� The speci�cations are embedded through annotations that look like
comments to a normal C compiler but help APP identify the speci�cation structure� This
also is a source�level translator that works by using additional variables� bu�ers� etc� It gives
additional power by using looping syntax to permit existential and universal quanti�cation
over �nite domains of any type of data structure �array� linked list etc��� However� the use
of the tool is limited to C� Therefore it is does not need to support subcontracting and
does not need to worry about privacy of variables� It also lacks support for model�based
speci�cations�

��

Conclusions

The important contribution of the �Run�time Assertion Checker� are supporting model�
based speci�cations that are not provided by most of the speci�cation languages� It also
handles re�nement and behavioral subtyping in presence of complex information hiding
semantics of Java� Also the checker is easy to use and gives the user control over generating
and executing the extra code to check the preconditions�

��

Acknowledgements

This work was supported in part by NSF grant CCR���������
Thanks to Clyde Ruby and Curtis Clifton for discussions about the design of the tool�

Thanks to my colleagues in the �Writer�s Workshop� seminar course of Spring ���� that
helped me improve my writing and hence this design document� Thanks to Dr� Doug
Jacobson for serving on my POS committee and also to Dr� Albert Baker to take time out
of his work schedule to serve on the POS committee� Thanks to Dr� Gary Leavens for his
guidance in designing the tool and for discussions to clarify the semantics of JML and of
course� to agree to guide me as a major professor through my Masters� degree in Computer
Science�

��

Bibliography

DL��� Krishna Kishore Dhara and Gary T� Leavens� Forcing Behavioral Subtyping
Through Speci�cation Inheritance� March ����� 	���� 	�th International Confer�
ence On Software Engineering�

Gan��� Ananad Ganapathy� Design and Implementation of a JML Type Checker� Master�s
thesis� Iowa State University� 	����

Gea��� Benedict Gomes and David Stoutamire et al� A Language Manual for Sather ����
October 	����

iCo��� iContract�The Java�tm� Design by Contract�tm� Tool� February �����
http���www�reliable�systems�com�tools�iContract�iContract�htm�

KC��� Miguel Katrib and Jes"us Coira� Improving Ei�el Assertions Using Quanti�ed
Iterators� JOOP� 	����������� November 	����

LBR��� Gary T� Leavens� Albert L� Baker� and Clyde Ruby� Preliminary Design of JML�
A Behavioral Interface Speci�cation Language for Java� Technical report� Iowa
State University� December 	����

LC��� Gary T� Leavens and Yoonsik Cheon� Preliminary design of Larch�C��� Technical
Report ���	�� Iowa State University� Department of Computer Science� May 	����

Mey��� Bertrand Meyer� Object�Oriented Software Construction� Prentice Hall� 	����

Par��� Terence Parr� Exactly 	��� words on languages and parsing� Excerpt from� Lan�
guage Translation Using PCCTS � C��� January 	����

Par��� Terence Parr� ANTLR Reference Manual� http���www�antlr�org�doc�index�html�
����� edition� May 	����

PF��� Sara Porat and Paul Fertig� Class assertions in C��� JOOP� ����������� May
	����

Ros��� David S� Rosenblum� A Practical Approach to Programming With Assertions�
IEEE Transactions on Software Engineering� �	�	��	���	� January 	����

Sch��� Gary L� Schaps� Compiler Construction with ANTLR and Java� Dr� Dobb�s Jour�
nal� March 	���� http���www�ddj�com�articles�	�������������h�����h�htm�

WS��� David Welch and Scott Strong� An Exception�Based Assertion Mechanism for
C��� JOOP� 		���������� Jul 	����

��

Appendix A

Generated Code

The following code is generated by the tool for class BoundedColorPoint in �gure ����
�Note� The code is formatted to �t the width of the paper��

��� refine� BoundedColorPoint �� �BoundedColorPoint	jml�refined��

public class BoundedColorPoint extends Point implements ColorPoint

�

protected int

jmlresolutionBoundedColorPoint��

�

return �maxx � maxy��

�

protected int color�

private int maxx � ����

private int maxy � ����

���private represents� resolution �� �maxx � maxy��

public void setPoint�int
x
 int
y�

���

also

private
normal
behavior

requires� ��
x �� maxx� �� �
y �� maxy���

ensures� ��x ��
x� �� �y ��
y���

���

�

if �edu	iastate	cs	jml	checker	runtime	Checker	isActive�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION�� �

edu	iastate	cs	jml	checker	runtime	Checker	enterAssertionCheck���

boolean

jml��

try �

boolean

jml� �

try �

boolean

jml��

��

try �

jml� � �
x �� maxx��

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
y �� maxy��

�

catch�Exception e� �

jml� � false�

�

jml� � �

jml� ��

jml���

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

boolean

jml��

try �

jml� � �
x �� ���

�

catch �Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
y �� ���

�

catch �Exception e��

jml�� false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e� �

jml�� false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e��

jml�� false�

�

�	

edu	iastate	cs	jml	checker	runtime	Checker	assert�

jml�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION

BoundedColorPoint	java�
 ��
 �BoundedColorPoint�
 �setPoint�

 null��

edu	iastate	cs	jml	checker	runtime	Checker	exitAssertionCheck���

�

�

x �
x�

y �
y�

color � ��

�

�

public void setResolution�int
maxx
 int
maxy�

���

also

private
normal
behavior

requires� �resolution �� ���

ensures� ��maxx ��
maxx� �� �maxy ��
maxy���

���

�

if �edu	iastate	cs	jml	checker	runtime	Checker	isActive�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION�� �

edu	iastate	cs	jml	checker	runtime	Checker	enterAssertionCheck���

boolean

jml��

try �

boolean

jml� �

try �

jml� � �

jmlresolutionBoundedColorPoint�� �� ���

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

boolean

jml��

try �

jml� � �
maxx �� ���

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
maxy �� ���

�

��

catch�Exception e� �

jml� � false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e� �

jml�� false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e ��

jml� � false�

�

edu	iastate	cs	jml	checker	runtime	Checker	assert�

jml�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION

�BoundedColorPoint	java�
 ��
 �BoundedColorPoint�
�setResolution�

 null��

edu	iastate	cs	jml	checker	runtime	Checker	exitAssertionCheck���

�

�

maxx �
maxx�

maxy �
maxy�

�

�

public void setColorPoint�int
x
 int
y
 int
color�

���

also

private
normal
behavior

requires� ��
x �� maxx� �� �
y �� maxy���

ensures� ���x ��
x� �� �y ��
y�� �� �color ��
color���

���

�

if �edu	iastate	cs	jml	checker	runtime	Checker	isActive�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION�� �

edu	iastate	cs	jml	checker	runtime	Checker	enterAssertionCheck���

boolean

jml��

try �

boolean

jml��

try �

boolean

jml��

try �

jml� � �
x �� maxx��

��

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
y �� maxy��

�

catch�Exception e� �

jml� � false�

�

jml� � �

jml� ��

jml���

�

catch�Exception e� �

jml� � false�

�

boolean

jml��

try �

boolean

jml��

try �

boolean

jml��

try �

jml� � �
x �� ���

�

catch �Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
y �� ���

�

catch �Exception e��

jml� � false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e� �

jml� � false�

�

boolean

jml��

try �

jml� � �
color �����

�

catch �Exception e��

jml�� false�

�

jml� � �

jml� ��

jml���

��

�

catch �Exception e� �

jml�� false�

�

jml� � �

jml� ��

jml���

�

catch �Exception e��

jml�� false�

�

edu	iastate	cs	jml	checker	runtime	Checker	assert�

jml�

edu	iastate	cs	jml	checker	runtime	TypeCode	PRECONDITION

�BoundedColorPoint	java�
 ��
 �BoundedColorPoint�
�setColorPoint�

 null��

edu	iastate	cs	jml	checker	runtime	Checker	exitAssertionCheck���

�

�

x �
x�

y �
y�

color �
color�

�

�

�

��

