
Seven More
Myths of
Formal
Methods

JONATHAN P. BOWEN, Oxford University
MICHAEL G . HINCHEY, University of Camhdge

a

I
Mathematicians first used the sign 4-l without in the least knowing
what it could mean, because it shortened work and led to correct results.
People naturally tried to find out why this happened and what d-1
really meant. After two hundred years thy succeeded.

- W. W. Sawyer, Mathematician’s Delight, 1943.

e New myths about fomal n 1990, Anthony Hall pub- believe that formal methods are merely

methods are gaining tacit lished a seminal article that listed and an academic exercise - a form of men-
dispelled seven myths about the nature , tal masturbation that has no relation to

acceptance both outside and and application of formal methods.’ real-world problems. The media’s por-

inside the system-development
Today - five years and many successful / trayal of formal methods does little to
applications later-formal methods re- help the situation. In many “popular

cozwnunhy. The authors address main one of the most contentious areas press” science journals, formal methods
of software-engineering practice. are subjected to either deep criticism or,

and dispel these myths based on In essence, a formal method is a worse, extreme hyperbole.

their observations of industrial
mathematically based technique for de- Many of Hall’s myths were - and we
scribing a system. Using formal meth- believe to a certain extent still are -

projects. ods, people can systematically specify, propagated by the media. Fortunately,
develop, and verify a system. However, today these myths are held more by the
as we show in the box on page 37, basic public and the computer-science com-
definitions of formal methods and re- munity at large than by system develop-
lated terms are somewhat confused. ers. It is our concern, however, that new

What is clear is that despite 25 years myths are being propagated, and more
of use, few people understand exactly alarmingly, are receiving a certain tacit
what formal methods are or how they are acceptance from the system-develop-
applied.* Many nonformalists seem to , ment community. We reexamine Hall’s

*

34 074cL7459/94/$04.m Q1 1994 IEEE JULY 1995

myths in the box on this page and, fol-
lowing his lead, we address and dispel
seven new myths about formal methods.

MYTH 8

l Formal metboa% delay the da’elopment
process.

Several formal-methods projects have
run notoriously over schedule. However,
to assume this is a problem inherent in
formal methods is irrational. These pro-
jects were delayed not because formal-
methods specialists lacked ability, but be-
cause they lacked experience in determin-
ing how long development should take.

Estimating project cost is a major
headache for any development team. If
you follow the old adage, “estimate the
cost and then double it,” you’re still

will likely provide more useful data.
Despite these difficulties, there have

been some very successml formal-meth-
ods projects in which development time
was significantly reduced. The Inmos
T800 floating-point unit chio, oroduced

-. L .

using Z and the Occam Transformation
System, was finished 12 months ahead of
schedule, and the application of Z (and
more recently B) to IBM’s CICS system
resulted in a 9 percent savings in devel-
opment costs.

MYTH 9

+ Formal methods lack tools.
Just as in the late 1970s and early

1980s when CASE and computer-aided

ductivity and reduce “bugs,” tool support
is now seen as a way to increase produc-
tivity and accuracy in formal develop-
ment. Many projects place great empha-
sis on tool support.’ This is by no means
coincidental, but rather follows a trend
that we expect will result in integrated
workbenches to support formal specifi-
cation, just as CASE workbenches sup-
port system development using more
traditional structured methods.

Several formal methods incorporate
tool support within the method itself. In
this category are specification languages
with executable subsets (such as OBJ)
and formal methods that incorporate
theorem provers as a key component,
such as Larch (with the Larch Prover),
Nqthm (successor to the Bover-Moore

structured-programming tools were seen ~ prover), and higher order logic (sup-
as a way to increase programmer pro- 1 ported by HOL and more recently, the

likely to underestimate. Determining
development time is equally difficult (ii
fact, the two areinevitably intertwined).
A number of models have been devel-
oped to cover cost- and development-
time estimation. Perhaps the most fa-
mous is Barry Boehm’s Cocomo model,’
which weights various factors according
to the organization’s history of system
development. Herein is the crux of the
problem.

Any successful model of cost- and de-
velopment-time estimation must be
based on historical information and de-
tails such as levels of experience and fa-
miliarity with the problem. Even with
traditional development methods, this
information is not always available.
Historical information about projects
that used formal development tech-
niques is likely to be even more scarce,
because we have not yet applied formal
methods to a sufficient number of pro-
jects. Surveys of formal development’*’
and highlights of successes, failures, hin-
drances, and so on, will eventually pro-
vide us with the information we require.

Many of the much-publicized formal-
methods projects have been in very spe-
cialized domains, producing data that is
of limited use. Future work with more
conventional developments and applica-
tions in domains such as process control

HALL’S MYTHS REVISITED

In 1990, Hall articulated and dispelled the following myths about formal
methods,

+ Myth 1: Fornuzi me&o& can guarantee that soeare is perfkct.
+ Myth 2 : Formal methocir are all about program proving.
+ Myth 3 : Formal metboa% are only usej%i fbr safety-critical ?ynpm
+ Myth 4: Fonnui met&h require high4 trained mathematicians.
+ Myth 5: For& metboa increase the cost of development.
+ Myth 6: Font& metbodr are umacceptab!e to users.
+ Myth 7: Format metbodr are not wed on real, large-scale software.
Myths that formal methods can guarantee perfect software and eliminate the

need for testing (Myth 1) are not only ludicrous, but can have serious ramifications
in system development if naive users of formal methods take them seriously.

Although claims that formal methods are all about proving programs correct
(Myth 2) and are only useful in safety-critical systems (Myth 3) are untrue, they are
not quite so detrimental. A nnmber of successful applications in non-safety-critical
domains have helped to clarify these points.

The derivation of many simple formal specifications of complex problems, and
the successful development of several formal-methods projects under budget have
selved to dispel the myths that the application of formal methods requires highly
trained mathematicians (Myth 4) and increases development costs (Myth 5). The
successful participation of end users and other nonspecialists in system develop-
ment with formal methods has ruled out the myth that formal methods are unac-
ceptable to users (Myth 6). The successful application of formal methods to several
large-scale, complex systems - many of which have received much media atten-
tion - should put an end to beliefs that formal methods are not used on real
large-scale systems (Myth 7).

*. . ?
i” “.

IEEE SOFTWARE 35

PVS Prototype Verification System).
Many basic tools are widely available

today. For example, Z is supported by
ZTC, a PC- and Sun-based type-check-
ing system available via anonymous file-
transfer protocol for noncommercial
purposes, and by Fuzz, a commercial
type-checker that also runs under Unix
and DOS. More integrated packages
thatsupport typesetting and specification
intepritv checking include
Log&a Cambridge; Form-
aliser (for Microsoft Win-
dows), Imperial Software
Technology’s Zola (which
also incorporates a tactical
proof system), and York
Software Engineering’s
Cadiz (a tool suite for Z
that now supports the re-
finement to Ada code). The
Mural system, developed
at University ofManchest-

INTEGRATING
velopment-process activihes.
Such environments do not as

FORMAL AND yet exist, but several toolkits
represent steps in the right

STRUCTURED ;$;yb;-sL Tool,-ox
METHODS CAN supports formal develop-

OFFER FULL ment in VDM-SL and in-

CYCLE SUPPORT.
eludes, as you might expect,
standard type checkers and

er, supports the construction of VDM
specifications and refinements; using the
proof assistant, users can generate proof
obligations to verify the internal consis-
tency of specifications. FDR, from For-
mal Systems Europe, is a model- and re-
finemeint-checker for CSP (communicat
ing sequential processes). CRI (Computer
Resources International) produces an as-
sociated toolset for the Raise develop-
ment method (Rigorous Approach to In-
dustrial Software Engineering), which
is a more comprehensive successor to
VDM. Finally, ICL’s ProofPower uses
higher order logic to support specifica-
tion and verification in Z.

specifications and refinement. These en-
vironments will also support specifica-
tion animation, proof of properties, and
proofs of correctness. Such toolkits will
be integrated so that, like integrated pro-
gramming-support environments, they
will support both version control and
configuration management and devel-
opment by larger teams. They will also
facilitate more harmonious development

by addressing all of the de-

Perhaps motivated by the ProofPower
approach, much attention has been fo-
cused on tailoring various “generic” the-
orem provers for use with model-based
specification languages like Z. Although
an implementation in OBJ seems to be
too slow, success has been reported with
HOL and EVES, a toolset based on
Zermelo-Fraenkel set theory.

In the future, we expect more em-
phasis to be placed on integrated formal-
development support environments,
which are intended to support most for-

. mal-development stages, from initial
functional specifications through design

*

36

static semantics checkers.
Developers enter VDM-SL

specifications in ASCII. An interpreter
supports all of the executable constructs
of VDM-SL, allowing a form of anima-
tion and specification “testing.” The ex-
ecuted specifications can be debugged
using an integrated debugger, and testing
information is automatically generated.
Finally, a pretty-printer uses the ASCII
input to generate VDM-SL specifica-
tions in LaTex format.

The B-Toolkit, from B-Core, is a set
of integrated tools that augment Abrial’s
B-Method and the associated B-Tool for
formal software development by address-
ing industrial needs in the development
process. Many believe that B and the B-
Method represent the next generation of
formal methods; if this is true, then B and
similar toolkits will certainly form the
basis of future formal-development envi-
ronments.

MYTH10

+ Formal methods replace traditional
engineering design methods.

One of the major criticisms of formal
methods is that they are not so much “me-
thods” as formal systems. Although they
provide support for a formal notation (for-

mal specification language), and some
form of deductive apparatus (proof sys-
tem), they fail to support many of the
methodological aspects of the more tradi-
tional structured-development methods.

In the context of an engineering dis-
cipline, a method describes how a process
is to be conducted. In the context of sys-
tem engineering, a method consists of an
underlying development model; a lan-
guage or languages; defined, ordered
steps; and guidance for applying these in
a coherent manner.6

Many so-called formal methods do
not address all of these issues. Although
they support some of the design princi-
ples of more traditional methods - such
as top-down design and stepwise refine-
ment - they place little emphasis on the
underlying development model and pro-
vide little guidance as to how develop-
ment should proceed. Structured-devel-
opment methods, using a model such as
Boehm’s spiral model, on the other hand,
generally support all stages of the system
life cycle from requirements elicitation
through postimplementation mainte-
nance. In general, these underlying mod-
els recognize the iterative nature of sys-
tem development. However, many
formal development methods assume
that specification is followed by design
and then by implementation, in strict se-
quence. This is an unrealistic view of de-
velopment - every developer of com-
plex systems must revisit both the
requirements and the specification at
much later stages in development.

Although Hall disputes the myths
that formal methods are unacceptable to
users and require significant mathemat-
ical ability, more traditional design me-
thods excel at requirements elicitation and
interaction with users. They offer nota-
tions that can be understood by nonspe-
cialists and serve as the basis for a contract.

Traditional structured methods are
severely limited because they offer few
ways to reason about the validity of a
specification or whether certain re-
quirements are mutually exclusive. The
former is often only discovered after im-
plementation; the latter, during imple-
mentation. Formal methods, of course,

JULY 1995

.

I’

allow the possibility of reasoning about
requirements, their completeness, and
their interactions.

Indeed, instead of formal methods re-
placing traditional engineering-design
methods, a major area for research is the
integration of structured and formal
methods. Such an integration leads to a
“true” development method that fully
supports the software life cycle and al-
lows developers to use more formal tech-
niques in the specification and design
phases, supporting refinement to exe-
cutable code and proof-of properties.
The result is that two views of the system
are presented, letting developers con-
centrate on aspects that interest them.

Some people suggest that this inte-
grated approach lets structured design
serve as a basis for insights into the formal
specification. This idea is clearly contro-
versial. Opponents argue that an ap-
proach that allows a structured design to
guide formal-specification development
severely restricts levels of abstraction and
goes against many principles of formal-
specification techniques. Proponents of
integration argue that the approach is
easier for users unskilled in formal-spec-
ification techniques, that it aids in size and
complexity management, and that it pro-
vides a way to structure specifications.’

Approaches to method integration
vary from running structured and formal
methods in parallel, to formally specify-
ing transformations from structured-
method notations to formal-specification
languages.

Much success has been reported using
the former technique. The problem,
however, is that because the two meth-
ods are being addressed by different per-
sonnel, the likelihood that benefits will
be highlighted is low. In many cases, the
two development teams do not ade-
quately interact. For example, there is a
project underway at British Aerospace
using traditional and formal develop-
ment methods in parallel. The two de-
velopment teams are not permitted to
communicate, and the formal approach
will be subject to the same standards re-
views, which are certified against IS0
9000. The project’s aim is to investigate

how form4 methods miaht better fit into
current development practices.

More integrated approaches to in-
tegration include the translation of
SSAD31 (Structured Systems Analysis
and Design Methodology) into Z as part
of the SAZ project; the integration of
Yourdon Modern Structured Analvsis ,
and Z in a more formalized manner, and
the integration of various structured no-
tations with VDM and CSP. Although
these approaches may have great poten-
tial, unlike the parallel approach they
have yet to be applied to realistic systems.

MYTH11

+ Formal method only apply to sofkvaare.
Formal methods can be applied

equally well to hardware design and soft-
ware development. Indeed, this is one of
the motivations of the HOL theorem
prover that was used to verify parts of the
Viper microprocessor. Other theorem-
proving systems that have been applied
to hardware verification include the
Boyer-Moore, Esterel, Nuprl, ZOBJ,
Occam Transformation System, and
Veritas proof tools. Model checking is
also important in checking hardware de-
signs if the state space is small enough
(and techniques like Binary Decision
Diagrams handle an impressive number
of states). Perhaps the most convincing
and complete hardware-verification ex-
ercise is Computational Logic’s FM900 1
microprocessor, which has been verified
down to a gate-level netlist representa-
tion using the Boyer-Moore theorem
prover. (A netlist is a list of component
gates and their interactions.)

Inmos provides two examples of real-
world industrial use. The T800 trans-
puter floating-point unit has been veri-
fied by starting with a formalized Z
snecification of the IEEE floating-noint I v L
standard. The Occam Transformation
System was then used to transform a
high-level program to the low-level mi-
crocode by means of proven algebraic
laws. More recently, parts of the new
T9000 transputer pipeline architecture
have been formalized using CSP and

DEFINING FORMAL METHODS

Highly publicized accounts of
formal-methods application to a
number of well-known systems,
such as the Sizewell-B nuclear
power plant in the UK, IBM’s
CICS system, and the most recent
Airbus aircraft, have helped bring
the industrial application of for-
mal methods to a wider audience.

However, even basic terms
such as “formal specification” are
still likely to be confusing. For
example, the following alternative
definitions are given in a glossary
issued by the IEEE:

1. A specification written and
approved in accordance with
established standards.

2. A specification written in a
formal notation, often for use in
proof of correctness.

Although the latter is accepted
in the formal-methods communi-
ty, the former may have more
widespread acceptance in industri-
al circles. A search of the abbrevi-
ation CSP in an online acronym
database cited “Commercial Sub-
routine Package,” “CompuCom
Speed Protocol,” and “Control
Switching Point,” but not “Com-
municating Sequential Processesn
- which would be the likely
choice of people working with
formal methods. Finally, a search
for VDM did reveal the term
Vienna Development Method, but
also “Virtual DOS Machine” and
“Virtual Device Metafile” which
may or may not be desirable bed-
fellows!

Besides ambiguity in the basic
terminology, the formal notations
themselves can be confusingto
practitioners not trained in their
use, and as a result the uninitiated
might find it easier to ignore
them than to investigate further.

.

IEEE SOFTWARE 37

, .

FORMAL METHODS RESOURCES

There are several
electronic distribution lists
on formal methods and
related topics, including

o Z Forum (zforum-
request@comlab.ox.ac.uk),

+ VDM Forum
(vdm-forum-request@
mailbase.ac.uk),

+ Larch Interest Group
(larch-interest-request@
src.dec.com), and

l OBJ Forum
(objforum-request@comlab.
ox.ac.uk).

Z,Fonun has spawned
comp.specification.2, an
electronic newsgroup that
is read regularly by about
30,000 people worldwide. A
newsgroup devoted to speci-
fication in general, camp.
specification, regularly gen-
erates discussions on formal
methods, as well as the more
traditional structured meth-
ods, object-oriented design,
and so on, as does the camp.
software-eng newsgroup.

A recently established
mailing list at University of
Idaho (formal-metbods-re-
qne.st%cs.uidaho.edu) ad-
dresses formal methods
in gene& rather than any
specifk notation, and a new
mailingliinmby&eZ
User Group addresses edu-
cational issues (zugeis-re-
quest@comlab.ox.ac.uk). In
addition, the newsletter

of the IEEE Technical Seg-
ment Committee on the
Engineering of Complex
Computer Systems (ieee-
tsc-eccs-request@cl.cam.ac.
uk) addresses issues related
to formal methods and for-
mal-methods education.

There are also anon-
ymous FTP archives for Z
(including an online and reg-
ularly revised comprehensive
bibliography). The global
World Wide Web electronic
hypertext system, which is
rapidly becoming very popu-
lar, also provides support for
formal methods. A useful
starting point is http://www.
comlab.ox.ac.uWarchive/
formal-methods.html which
provides pointers to other
electronic archives concem-
ed with formal methods and
lets you download tools such
as HOL and PVS.

Pddds. The proceed-
ings of the Formal Methods
Europe symposiums (and
their predecessors, the VDM
symposium) are available in
S@nger-Verlag’s~ Notes
in co?nputer science series,
while thefmocdings of the
Refinement Workshops and
the last five 2 User Meetings
haveheenpubIishedinspr-
inger-Verlag’s Wwksbops in
Computing series. Both of
these series contain the pro-

ceedings of many other in-
teresting colloquiums, work-
shops, and conferences on
formal methods.

Although papers on for-
mal methods are becoming
well-established at a number
of US conferences, there is
as yet no regular conference
in the US devoted to formal
methods. The Workshop on
Industrial-Strength Formal
Specification Techniques
may represent a step in that
direction (see the report on
pp. 106-107). Although for-
mal methods are gaining
momentum in the US, the
main journals and publica-
tions devoted to formal meth-
ods are based in Europe -
and in the UK, specifically.

These include Forma!
Aspects of Computing, Formal
Methods in System Design
and the FACS Errrope
newsletter run by Formal
Methods Europe and the
British Computer Society’s
Special Interest Group on
Formal Aspects of Com-
puting Science, among oth-
ers. Tbe Computer3ournal,
Software Engineering
Journal, and Information
and Sojharc Tecbnoiogy
regularly publish articles
on or related to formal
methods, and have run or
plan to run special issues
on the subject

As far as we liilow, there
are no US journals devoted
specifically to formal meth-
ods, although some of the
highly respected journals,
such as IEEE Transactions
on Softu;are Engineering and
Journal oj’tbe ACM, and pop-
ular periodicals, such as
Computer, IEEE Sojhare,
and Communications of the
ACM, regularly publish rele-
vant articles. IEEE BE, Com-
puter, and IEEE Sohare co-
ordinated successful snecial

L

issues on formal methods in
1990. In January 1994, an
IEEE Sofrware special issue
on safety-critical systems de-
voted considerable attention
to formal methods, as has a
newly launched journal,
High Integrity Systems.

COrrS0S. Popular Z courses
are run by Logica Cambridge,
Praxis, Formal Systems (Eu-
rope), and Oxford University
Computing Laboratory.
About 70 percent of all in-
dustrially based formal-
methods courses focus on
the Z notation. Formal Sys-
tems also runs a CSP course
andaCSPwithZcourse,both
of which have been given in
the US as well as the UK.
IFAD in Denmark offers an ~
industrially based formal- ~
methods course using VDM ~
and VDM++. 1

checked for correctness. (A collection of
papers by experts in the field covers
these applications in more detail.8)

A more recent approach to hardware
development is hardware compilation.
This allows a high-level program to be
compiled directly into a netlist of sim-
ple components and their interconnec-
tions. If required, Field Programmable
Gate Arrays’allows this to be done en-
tirely as a software process, since these
devices let the circuit be configured ac-
cording to the static RAM contents
within the chip (this route is particularly

useful for rapid prototyping).
It is also possible to prove that the

compilation process itself correct. In this
case, the burden ofproof is reduced con-
siderably because there is no need to
prove the hardware correct with each
separate compilation. For example, a mi-
croprocessor could be compiled into
hardware by describing the micropro-
cessor as an interpreter written in a high-
level language. Additions and changes to
the instruction set can be made easily by
editing the interpreter and recompiling
the hardware with no additional proof-

of-correctness required.
In the future, such an approach could ,I

make provably correct hardware/soft-
ware codesign possible. X unified proof
framework would facilitate the explo-

~

ration of design trade-offs and interac-
jl

tions between hardware and software in
11
I/

a formal manner.

At some point or another, most of us ,I

, . have heard the argument that formal with David Parnas at McMaster Uni- cilitates briefer and more elegant speci-
methods are not required. This is untrue. versity, a proposed standard for software fications, but it can also make reasoning
Although there are occasions in which in the safety systems of nuclear-power more difficult. LOTOS was standardized
formal methods are in a sense “overkill,” stations. Ontario Hydro has developed a in 1989, and the International Organi-
in other situations they are very desir- number of standards and procedures zation for Standardization has proposed
able. In fact, the use of formal methods is within the framework set by AECB, and draft standards for both 2 and VDM.9
recommended in any system where cor- more procedures are under develop- These standards set forth sound con-
rectness is of concern. This clearly ap- ment. Standards and proce- structs and their associated
plies to safety- and security-critical sys- dures developed by Cana-

STANDARDS
formal semantics, making it

terns, but it also applies to systems in dian licensees mandate the easier to read other people’s
which you need (or want) to ensure that use of formal methods and,
the system will avoid the catastrophic together with 00-55, are ARE POINTLESS specifications (assuming, of

course, that they conform to
consequences of a failure. among the farthest reaching IF THEY DON’T
only desirable, but required. Many stan- Whether or not you be-

I

pointless if it hoes not reflect
dards bodies have not only used formal lieve that formal methods
specification languages in making their are necessary in system de-

OPINIONS OF the opinions of active users

own standards unambiguous, but have velopment, you cannot deny ACTIVE USERS.
and the developments that
have evolved in formal metb-

Sometimes formal methods are not at the moment. REFLECT TH E
“g;;;$); standard is

mandated or strongly recommended the that they are indeed required ods. There are now several
use of formal methods in certain classes in certain classes of applica- outlets for practitioners to
of applications.9~‘0 tions and are likely to be required more discuss draft standards and to seek advice

The International Electrotechnical often in the future.9 and solutions to problems and difficulties
Commission specifically mentions tem- from other practitioners. Chief among
poral logic and several formal methods these outlets are various distribution lists,
(CCS, CSP, HOL, LOTOS, OBJ, VDM, MYTH 13 books, periodicals, and conferences. We
and 2) in the development of safety-crit- list some examples of each in the box on
ical systems. The European Space Agen- + Formal methods are not supported. page 38.
cy suggests that VDM or Z, augmented Once upon a time (as all good stories Formal methods (in particular Z,
with natural-language descriptions, start) formal development might have VDM, CSP, and CCS) are taught in
should be used to specify safety-critical been a solitary activity, a lone struggle. most UK undergraduate computer-sci-
system requirements. It also advocates Today, however, support for formal me- ence courses. Although still quite un-
proof-of-correctness, a review process, thods is indisputable. If media attention common in the US, a recent NSF-spon-
and the use of a formal proof before test- is anything to go by, interest in formal sored workshop sought to establish a
ing. The UK Ministry of Defence draft methods has grown phenomenally, albeit curriculum for teaching formal methods
Interim Defence Standards 00-55 and from a small base. Along with object ori- in US undergraduate programs. We
00-56 mandate the extensive use of for- entation, formal methods have quickly hope this will become a regular event,
ma1 methods. The draft standard 00-55 become great buzzwords in the com- and will help to establish formal meth-
sets forth guidelines and requirements puter industry. Long gone are the days ods as a regular component of US uni-
that include the use of a formal notation when lone researchers worked on devel- versity curricula. A number of industri-
in the specification of safety-critical com- oping appropriate notations and calculi. ally based courses are also available, and
ponents and an analysis of such compo- The development of more popular for- in general can be tailored to the client or-
nents for consistency and completeness. ma1 methods owes much to the connibu- ganization’s needs.
All safety-critical software must also be tions of many people beyond the method
validated and verified; this includes for- originators. In many cases, researchers
ma1 proofs and rigorous (but informal) and practitioners extended the languages MYTH14
correctness proofs, as well as more con- to support their particular needs, adding
ventional static and dynamic analysis. useful (though sometimes unsound) op- + Formal-methods people always use
The draft standard 00-56 deals with the erators and data structures and extending formal methods.
classification and hazard analysis of the the languages with module snuctures and There is widespread belief that pro-
software and electronic components of object-oriented concepts. ponents of formal methods apply them
defense equipment, and also mandates There is a certain trade-off between in all aspects of system development.
the use of formal methods. the expressiveness of a language and the This could not be further from the truth.

Canada’s Atomic, Energy Control levels of abstraction that it supports. Even the most fervent supporters of for-
Board has commissioned, in conjunction Making a language more expressive fa- ma1 methods recognize that other ap-

IEEE SOFTWARE 39

proaches are sometimes better. of lines of code and thousands of pages coming collection of papers’ that will
In user-interface design, for example, of specifications). Clearly (with appro- play its part by describing the use of for-

it is very difficult for the developer to de- priate apologies to Einstein), system de- ma1 methods at an industrially useful
termine, and thus formalize, the exact re- velopment should be as formal as neces- scale.
quirements of human-computer inter- sary, but not mov-e formal. More research is required to further
action at the outset of a project. In many Formal methods have been used to develop the use of formal methods. For
cases, the user interface must be config- develop a number of support tools for example, ProCoS, the ESPRIT basic re-
urable, with various color combinations conventional development methods, search project on provably correct sys-
highlighting certain conditions (such as such as the SSADM CASE tool de- terns, is investigating theoretical under-
red to denote an undesirable situation). scribed by Hall. Formal methods have pinnings and techniques to allow the
The great difficulty, however, is in de- also been used to help redevelop a re- formal development of systems in a uni-
termining how the user interface should verse engineering and analysis toolset for fied framework - from requirements to
look and feel. The appropriateness of a Cobol at Lloyd’s Register. Both of these specification, program, and hardware.
particular interface is a subjective matter projects used Z, which was also used in In addition, a ProCoS Working Group
and not really amenable to formal inves- defining reusable software architectures of 24 industrial and academic partners
tigation. Although there have been sev- and greatly simplified the decomposition has been established. Joint meetings be-
er-al (somewhat successful) approaches to of function into components and the tween the project and working groups
formal specification in user interfaces, l1 protocols of interaction between com- over the next three years allows a free
in general conformance testing here falls ponents. flow of ideas. The hope is that some of
in the domain of informal reasoning. To the best of our knowledge, how- these ideas will be used in a more indus-

There are many other areas in which, ever, formal methods have not been used trially oriented collaborative project in
although possible, formalization is im- extensively to develop the formal-meth- the future.
practical because of resources, time, or ods support tools described in Myth 9. Formal methods are not a panacea,
money. Most successful formal-methods Exceptions to this are the VDM-SL but one approach among many that can
projects involve the application of for- Toolbox and the addition of a formally help to improve system reliability.
ma1 methods to critical portions of sys- developed proof checker to HOL. However, to quote from a BBC radio in-
tern development. Only rarely are for- terview with Bev Littlewood of the
ma1 methods alone applied to all aspects Centre for Software Reliability at City
of system development. Even within

Ii
ow can the technology-transfer pro- University in London,

IBM’s-CICS project -which is often cess from formal-methods research “. . . ifyou want to build systems with
cited as a major successful application of to practice be facilitated? To start with, ultra-high reliability which provide very
formal methods-only about one-tenth more real links between industry and complex functionality and you want a
of the entire system was actually sub- academia are required, and the success- guarantee that they are going to work
jetted to formal techniques (although ful use of formal methods must be bet- with this very high reliability . . .
this still involved hundreds of thousands ter publicized. We have edited a forth- “. . . you can’t do it!” +

ACKNOWLEDGMENTS
We thank Anthony Hall for inspiring this article by authoring the Fall 1995, Prentice-Hall, Hemel Hempstead, UK, to appear; http://www.

“Seven Myths of Formal Methods.” Jonathan Bowen is funded by UK comlab.ox.ac.uk./archive/formal-methods/l,

Engineerhg and Physical Sciences Research Council (EPSRC) grant 6. MethodZntegratim: Conceptrand Case Studier, K. KronlGf, ed., John Wiley

GIUJl5 186. Mike Hinchey is funded by ICL. & Sons, NewYork, 1993.

7. L.T Semmens, R.B. France, and T.W.G. Docker, “Integrating Structured

REFERENCES Analysis and Formal Specification Techniques,” The Computw~., Dec.
1992, pp. 600-610.

1. J.A. Hall, “Seven Myths of Formal Methods,” IEEE .%$-ware, Sept. 1990, 8. Mechanized Reasoning and Hardware Design, C.A.R. Hoare and M.J.C.
pp 11-19. Gordon, eds., Prentice-Hall, Englewood Cliffs, NJ., 1992.

2. W.W. Gibbs, “Software’s Chronic Crisis,” .Sn’t=nt~~cAmerican, Sept. 1994, 9. J.P. Bowen, “Formal Methods in Safety-Critical Standards,” Pm. 1993
pp. 86-95. So$ware Engineering Standards Symp., IEEE CS Press, Los Alamitos,

3. B.W. Boehm, Softwa?e Engineting Economics, Prentice-Hall, Englewood Calif., 1993, pp. 168-177.
Cliffs, NJ., 1981. 10. J.P. Bowen and V. Stavridou, “Safety-Critical Systems, Formal Methods

4. S.L. C&hart, D. Craigen, and T. Ralston, “Experience with Formal and Standards,” So$ware Engineering3., July 1993, pp. 189-209.
Methods in Critical Systems,“IEEESofruare, Jan. 1994, pp. 21-28. 11. A. Dix, Forma[MethodrforInterartive Systems, Academic Press, San Diego,

5. Applicatim of Formal Merbodr, M.G. Hinchey and J.P. Bowen, eds., Calif., 1991.

40 JULY IS95

, .
Jonathan Bowen is a senior researcher at the
Oxford University Computing Laboratory. He
has worked in the field of computing in both
industry and academia since 1977. He currently
manages the ESPRIT ProCoS-WG Working
Group of 24 European partners and is working in
the area of provably correct hardware/software
codesign. His interests include formal specifica-
tion, 2, provably correct compilation, rapid pro-
totyping using logic programming, decompila-
tion, hardware compilation, safety-critical sys-

tems, and online museums.
Bowen received an MA in engineering science from Oxford Univer-

sity. He won the 1994 IEE Charles Babbage Premium award. He chairs
the i! User Group, is conference chair for the ZUM’95 international
conference of 2 users, and is a member of the IEEE Computer Society,
ACM. and Euromicro.

Mike H&hey is a researcher with the Univer-
sity of Cambridge Computer Laboratory and a
professor in the Real-Time Computing Labora-
tory at New Jersey Institute of Technology. His
research interests include formal specification,
formal methods, real-time systems, concurrency,
method integration, CASE, and visual program-
ming and environments. He has published widely
on various aspects of software engineering and is
the author or editor of several books on software
development with formal methods.

Hinckey received a BSc in computer science from University of
Limerick, Ireland, an MSc in computation from Oxford University,
and a PhD in computer science from University of Cambridge. He is
treasurer of the Z User Group, program chair for the ZUM’95 intema-
tional conference of Z users, and editor of the newsletter of tbe IEEE
Computer Society’s Technical Segment Committee on Engineering of
Complex Computer Systems. He is a member of the IEEE, ACM, AMS,
and an associate fellow of the Institute ofMathematics.

Address questions about this article to Bowen at Oxford University
Computing Laboratory, Wolfson Building, Pada Rd., Oxlixd OX1 3QD, UK;
Jonathan.Bowen@comlab.ox.ac.uk;http://uaw.comlab.ox.ac.uk/ou~~ple/
jonathan.bowen.html or to Hinchey at University of Cambridge Computer
Laboratory, New Museums.Site, Pembroke St., Cambridge CB23QG, UK;
Mike.Hinchey@cl.cam.ac.uk; http://www.cl.cam.ac.uk/users/mghlOOl/

or contact the Local ‘4rrangements chair:
Victor Obach
Pl. Lesseps, 3 1 Ent. 2a.; E-08023 BARCELONA
TeK +34-3-415.41.41; Fax: +34-3-415.55.56
E-Mail: difinsa@ibm.net

Organized by
The ESEC Steering Committee
Hosted by
AT1 with the support of CEPIS

IEEE SOFTWARE

Fifth

Seotember 25-28
ENGINEERING

Tutorials:
” Domain Analysis for Reuse: A Practical Approach”
Ruben PRIETO DIAZ (Fairfax, USA)
“Software Anzhitecture and Iterative Development
Process”
Philippe KRUCHTEN (Vancouver, CANADA)
“Software Design and Implementation

with C++ Components”
Mehdi JAZAYERI, Georg TRAUSMUTH
(Wieu, AUSTRIA)
“An Introduction to Computer Security”

Richald KEMMERE R, (Santa Barbara, USA)
“The Role of Formal Specifications in Software Test”
Hans-Martin HOERCHER (Kiel, GERMANY)

Keynote Speakers:
“Why Object-Oriented Databases are needed”
F. BANCILHON (FRANCE)
“Why Object-Oriented Databases are not needed”
B. MEYER (USA)
“A Personal Commitment to Software Quality”
W. HUMPHREY (USA)

Panel:
“Trends in Open Distributed Platforms”
Chair: G. LEON (SPAIN)

29 Papers

Sitges is a big tourist resort on the mediterranean coast
36 Km SW Barcelona. Please register a.s.a.p.. Early
registered delegates pay less and could get better
accommodation. September is peak season in Sitges.

Executive chair:
Pere BOTELLA (Barcelona, SPAIN)
Program chair:
Wilhelm SCHAFER (Paderborn, GERMANY)
Tutorial chair:
Gregor Engels (Leiden, THE NETHERLANDS)
For further information:
http://www-fib.upc.es/Congressos/ESEC95.html

