
1

CIS 771: Software Specifications

Lecture 16:
Pre/Post-conditions In OCL

Copyright 2001-2002, Matt Dwyer, John Hatcliff, and Rod Howell. The syllabus and all lectures for this course are
copyrighted materials and may not be used in other course settings outside of Kansas State University in their current
form or modified form without the express written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

CIS 771 -- Pre/Post-conditions in OCL 2

Outline

n Syntax for pre/post-conditions
n Example pre/post-conditions
n Checking pre/post-conditions in USE

…with the Academia model as the running example.

2

CIS 771 -- Pre/Post-conditions in OCL 3

Pre/Post-condition Syntax

context Typename::operationName(param1 : Type1, …): ReturnType
pre precondname1 : …param1… …self…
pre precondname2 : …param1… …self…

…

post postcondname1 : …result… …param1… …self…
post postcondname2 : …result… …param1… …self…

Name of class to
which operation
belongs

Multiple named preconditions (bool expressions).
Each of these may use the parameter ‘param1’ and
the name ‘self ‘ can be used to refer to the receiver
object.

Multiple named postconditions (bool expressions).
Each of these may use the OCL reserved word result
to denote the return value of the operation (if any).

Note: Frame conditions are a
special form of post -condition
so they are written using
‘post’.

CIS 771 -- Pre/Post-conditions in OCL 4

Example
Student::newID(n: Integer)

context Student::newId(n: Integer)
pre GE100: n >= 100
post NewId: id.oclIsNew
post IdNumber: id.number = n

true, if Id object bound to
id attribute of student did
not exist in the pre-state.

3

CIS 771 -- Pre/Post-conditions in OCL 5

Example
Student::dropCourse(c: Course)

context Student::dropCourse(c: Course)
pre NowTaking: taking->includes(c)
post NotTaking: taking->excludes(c)

…a first attempt

CIS 771 -- Pre/Post-conditions in OCL 6

Assessment
What pre/post states satisfy the specification when c = C3?

context Student::dropCourse(c: Course)
pre NowTaking: taking->includes(c)
post NotTaking: taking->excludes(c)

pre-state : self.taking = {C1,C2,C3}
post-state : self.taking = {C1,C2}

pre-state : self.taking = {C1,C2,C3}
post-state : self.taking = {}

Example 1:

Example 2:

…but this is not what we want

4

CIS 771 -- Pre/Post-conditions in OCL 7

Example
Student::dropCourse(c: Course)

context Student::dropCourse(c: Course)
pre NowTaking: taking->includes(c)
post NotTaking: taking = taking@pre->excluding(c)

Yields value of ‘taking ‘ in the pre-state

CIS 771 -- Pre/Post-conditions in OCL 8

Assessment
What pre/post states satisfy the specification when c = C3?

pre-state : self.taking = {C1,C2,C3}
post-state : self.taking = {C1,C2}

pre-state : self.taking = {C1,C2,C3}
post-state : self.taking = {}

Example 1:

Example 2:

…this is what we want

context Student::dropCourse(c: Course)
pre NowTaking: taking->includes(c)
post NotTaking: taking = taking@pre->excluding(c)

5

CIS 771 -- Pre/Post-conditions in OCL 9

Frame Conditions in OCL/USE

n In the dropCourse operation post-condition, we put no
constraints on other state components (e.g., the waiting
list).

n Should the waiting list, or prerequisite structure, etc.
change if someone drops a course?

n Some OCL references state that OCL adopts a “…and
nothing else changes” approach to frame conditions
n i.e., a post-condition is considered to be violated if a state that

is not explicitly listed in the post condition changes
n We will adopt this interpretation when writing our specifications.

n USE does NOT implement this type of checking.

CIS 771 -- Pre/Post-conditions in OCL 10

Assessment

n One might wonder what is the difference between the
post-condition and the code that realizes the post-
condition.

n taking = taking@pre->excluding(c)

n Specifications are supposed to tell “what” the result
should be (declarative) and not “how” to compute the
result.

n In the case above, there is not much difference, e.g.,

n taking := taking->excluding(c)

n However, we will see a contrasting example on the
following slide.

6

CIS 771 -- Pre/Post-conditions in OCL 11

Example

context A::sort(s : Sequence(Integer)) : Sequence(Integer)

post SameSize:
result->size = s->size

post SameElements:
result->forAll(i | result->count(i) = s->count(i))

post IsSorted:
Sequence{1..(result->size-1)}->

forAll(i | result.at(i) <= result.at(i+1))

Sorting sequences of integers

CIS 771 -- Pre/Post-conditions in OCL 12

Correctness vs. Algorithm

n We specify only the correctness criteria,
not how the results are computed

n The particular algorithm (e.g., quicksort,
heapsort) can be chosen at
implementation time

n We need not define a unique result

7

CIS 771 -- Pre/Post-conditions in OCL 13

Academia Operations

n Student::addCourse(c: Course)
n add c to set of courses that self is taking
n preconditions

n self is not already taking c
n self has already taken the prerequisites of c

n postconditions
n c is added to the set of course that self is taking

(and the set of courses being taken by self is
otherwise unchanged)

CIS 771 -- Pre/Post-conditions in OCL 14

Academia Operations

n Course::addPreReq(c: Course)
n make c a prerequisite of self
n preconditions

n c is not already a prereq of self
n self is not transitively a prereq of c (I.e., this will

ensure that there are no cycles in the prereq
structure – an invariant that the operation should
preserve)

n postconditions
n c is added to the set of self’s prerequisites (and

self’s prerequisites are otherwise unchanged)

8

CIS 771 -- Pre/Post-conditions in OCL 15

Academia Operations

n Student::completeCourse(c: Course, g: Grade)
n self completes course c and earns grade g

n c is removed from the set of courses that self is taking
n c is added to self’s transcript with grade g

n preconditions
n …for you to do…

n postconditions
n …for you to do…

CIS 771 -- Pre/Post-conditions in OCL 16

For You To Do…

n Pause the lecture…

n Starting with the file academia-9.use, construct the
pre/post-conditions for the Academia operations listed
on the following slide.

9

CIS 771 -- Pre/Post-conditions in OCL 17

Checking Pre/Post-Conditions in USE

!openter <source-expr> <operation-name> ([<argument-expr-list>])

!opexit

Structure of a USE script for checking pre/post-
conditions

…
use commands to generate some object
instances
…

…
use commands to carry out the effects
(state changes) of the operation
…

…
use commands that rely on the
effects/values produced by the operation
…

CIS 771 -- Pre/Post-conditions in OCL 18

Checking Pre/Post-Conditions in USE

Example using the dropCourse operation

-- create instances suitable for the academia-9 model
-- (use the script academia-extension4-instantiation.cmd)
read academia-extension4-instantiation.cmd

-- should succeed because Oksana is currently taking cis775
!openter oksana dropCourse(cis775)

-- effect of dropCourse
!delete (oksana,cis775) from Taking

-- exit operation, check postconditions with state saved at operation
-- entry time and current state (should succeed)
!opexit

10

CIS 771 -- Pre/Post-conditions in OCL 19

Details of openter

!openter oksana dropCourse(cis775)

1. Source expression is
evaluated to obtain
the receiver object.

2. The argument
expressions are
evaluated.

3. self is bound to object to which oksana
evaluates, and formal parameter c is bound
to object to which cis775 evaluates.Bindings:

self = student instance named by oksana
c = course instance named by cis775

4. All pre-conditions of the operation are
evaluated using old variables bindings plus
the new bindings to self and formal
parameters.

5. If check of pre-conditions succeeds,
operation call with new bindings are pushed
on operation stack and the pre-state is
saved (to be accessed if the post-condition
refers to it using the ‘@pre’ construct)

CIS 771 -- Pre/Post-conditions in OCL 20

Details of openter

1. The source expression is evaluated to determine the receiver
object.

2. The argument expressions are evaluated.

3. The variable self is bound to the receiver object and the argument
values are bound to the formal parameters of the operation. These
bindings determine the local scope of the operation.

4. All preconditions specified for the operation are evaluated.

5. If all preconditions are satisfied, the current system state is saved
and the operation call is saved on a call stack.

11

CIS 771 -- Pre/Post-conditions in OCL 21

Using openter

Example using the dropCourse operation

-- create instances suitable for the academia-9 model
-- (use the script academia-extension4-instantiation.cmd)
read academia-extension4-instantiation.cmd

-- should succeed because Oksana is currently taking cis775
!openter oksana dropCourse(cis775)

info vars
…
c : Course = @cis775
self : Grad = @oksana

info opstack
1. Student::dropCourse(c : Course) | oksana.dropCourse(@cis775)

CIS 771 -- Pre/Post-conditions in OCL 22

Details of opexit

1. The currently active operation is popped from the call
stack.

2. If an optional result value is given, it is bound to the
special OCL variable "result".

3. All postconditions specified for the operation are
evaluated in context of the current system state and
the pre-state saved at operation entry time.

4. All local variable bindings are removed.

12

CIS 771 -- Pre/Post-conditions in OCL 23

Assessment

n The previous example script for dropCourse
only tests the operation specification in one
context (academia-extension4-
instantiation.cmd) and for one set of argument
values.

n The user is responsible for creating enough
tests to reveal any potential flaws in the
operation specification.

n The operation actions are abstractly simulated
by the USE command-line steps (e.g., deleting a
pair from an association).

CIS 771 -- Pre/Post-conditions in OCL 24

Methodology

n Write an operation specification
n Come up with the USE command-line steps that

capture what you intend to actually code in the
body of the operation

n Write a number of test contexts and operation
calls to test your operation’s functionality (as
specified by the USE command-line steps)
against the specified pre/post-conditions

n Once you are satisfied that your specification
and abstract implementation are correct, you
can code the operation by providing a concrete
implementation for your command-line steps

13

CIS 771 -- Pre/Post-conditions in OCL 25

For You To Do…

n Pause the lecture…

n If you have not already done so, read through the
tutorial on pre/post-conditions in USE (using the
Employee model) that comes with the USE distribution.

n Code the three operation specifications in USE that you
wrote earlier in the lecture, and develop scripts to test
your specifications.
n Make sure that your scripts include multiple test cases – cases

that cause the pre/post-conditions to fail as well as cases that
cause the conditions to succeed.

CIS 771 -- Pre/Post-conditions in OCL 26

Acknowledgements
n Material for this lecture is based on the following sources

n Chapter 7 (the OCL chapter) of the OMG-UML specification (version 1.3 – March
2000)

n The documentation from the USE distribution (in particular, the documentation
on pre/post-conditions that uses the Employee model)

