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b Eastman Kodak Company, R&D Laboratories, Rochester, New York, USA

c Dept. of Computer Science, Iowa State University, Ames, Iowa, USA
d MIT Lab for Computer Science, Cambridge, Massachusetts, USA

e Dept. of Computer Science, University of Nijmegen, Nijmegen, the Netherlands
f Microsoft Research, Redmond, WA, USA

Abstract

The Java Modeling Language (JML) can be used to specify the detailed design of
Java classes and interfaces by adding annotations to Java source files. The aim of
JML is to provide a specification language that is easy to use for Java program-
mers and that is supported by a wide range of tools for specification type-checking,
runtime debugging, static analysis, and verification.

This paper gives an overview of the main ideas behind JML, the different groups
collaborating to provide tools for JML, and the existing applications of JML. Thus
far, most applications have focused on code for programming smartcards written in
the Java Card dialect of Java.

Key words: formal methods, formal specification, Java, runtime
assertion checking, static checking, program verification

1 Introduction

JML [23,24], which stands for “Java Modeling Language”, is useful for spec-
ifying detailed designs of Java classes and interfaces. JML is a behavioral
interface specification language for Java; that is, it specifies the behavior and
the syntactic interface of Java code. The syntactic interface of Java code, a
class or interface’s method signatures, attribute types, etc., is augmented with
JML annotations that more precisely indicate the correct usage of the API so
that programmers can use it as documentation. In terms of behavior, JML
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can detail, for example, the preconditions and postconditions for methods as
well as class invariants.

An important design goal is that JML be easy to understand for any Java
programmer. This is achieved by staying as close as possible to Java syntax
and semantics. Another important design goal is that JML not impose any
particular design method on users; instead, JML should be able to document
existing Java programs designed in any manner.

The work on JML was started by Gary Leavens and his colleagues and
students at Iowa State University, but has grown into a cooperative, open
effort. Several groups worldwide are now building tools that support the JML
notation and are involved with the ongoing design of JML. The open, coop-
erative nature of the JML effort is important both for tool developers and for
potential users, and we welcome participation by others. For potential users,
the fact that there are several tools supporting the same notation is clearly
an advantage. For tool developers, using a common syntax and semantics
can make it much easier to get users interested. After all, one of the biggest
hurdles to using a new tool is often the lack of familiarity with the associated
specification language.

The next section introduces the JML notation. Section 3 then discusses
the tools for JML in more detail. Section 4 discusses the applications of JML
in the domain of Java Card, the Java dialect for programming smartcards.
Section 5 discusses some related languages and tools, such as OCL and other
runtime assertion checkers, and we conclude in Section 6.

2 The JML notation

JML blends Eiffel’s design-by-contract approach [33] with the Larch [17] tra-
dition (and others which space precludes mentioning). Because JML supports
quantifiers such as \forall and \exists, and because JML allows “model”
(i.e., specification-only) fields, specifications can be more precise and com-
plete than those typically given in Eiffel. JML uses Java’s expression syntax
in assertions, thus JML’s notation is easier for programmers to learn than one
based on a language-independent specification language like the Larch Shared
Language [24,25] or OCL [42].

Figure 1 gives an example of a JML specification that illustrates its main
features. JML assertions are written as special comments in the Java code,
either after //@ or between /*@ ... @*/, so that they are ignored by Java
compilers but can be used by tools that support JML. JML extends the
Java syntax with several keywords—in the example in Figure 1, invariant,
requires, assignable, ensures, and signals. It also extends Java’s ex-
pression syntax with several operators — in the example \forall, \old, and
\result; these begin with a backslash so they do not clash with existing Java
identifiers.
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public class Purse {

final int MAX_BALANCE;
int balance;
//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;
/*@ invariant pin != null & pin.length == 4 &&
@ (\forall int i; 0 <= i && i < 4
@ ; 0 <= byte[i] && byte[i] <= 9);
@*/

/*@ requires amount >= 0;
@ assignable balance;
@ ensures balance == \old(balance) - amount &&
@ \result == balance ;
@ signals (PurseException) balance == \old(balance) ;
@*/

int debit(int amount) throws PurseException {
...
}

Figure 1. Example JML specification

The central ingredients of a JML specification are preconditions (given
in requires clauses), postconditions (given in ensures clauses), and (class)
invariants. These are all expressed as boolean expressions in JML’s extension
to Java’s expression syntax.

In addition to “normal” postconditions, JML also supports “exceptional”
postconditions, specified in signals clauses. These can be used to specify
what must be true when a method throws an exception. For example, the
signals clause in Figure 1 specifies that debit may throw a PurseException,
and, in that case, the balance will not change (as specified by the use of the
\old keyword).

The assignable clause for debit specifies a frame condition, namely that
debit will assign to only the balance field. Such frame conditions are essential
for verification of code when using ESC/Java or LOOP tool.

There are many additional features of JML that are not used in the exam-
ple in Figure 1. We briefly discuss the most important of these below.

• To allow specifications to be abstractions of implementation details, JML
provides model variables, which play the role of abstract values for abstract
data types.

For example, if instead of a class Purse, we were specifying an interface
PurseInterface, we could introduce the balance as such a model variable.
A class implementing this interface could then specify how this model field
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is related to the class’s particular representation of balance.

• To support specifications that need mathematical concepts, such as sets or
sequences, JML comes with an extensible Java library that provides these
notions. Thus, basic mathematical notions can be used in assertions as if
they were Java objects.

• A method can be used in assertions only if it is declared as pure, meaning
the method does not have any visible side-effects For example, if there is a
method getBalance() that is declared as pure,

/*@ pure @*/ int getBalance() { ... }

then this method can be used in the specification instead of the field balance.

• Finally, JML supports all the Java modifiers (private, protected, and
public) for restricting visibility. For example, invariants can be declared as
private invariants if they are only concerned with the private implemen-
tation details of a class and are not observable for clients.

3 Tools for JML

For a specification language, just as for a programming language, a range of
tools is necessary to address the various needs of the specification language’s
users such as reading, writing, and checking JML annotations.

There are different kinds of tools for checking specifications 3 :

• Runtime assertion checking and testing:
· One way of checking the correctness of JML specifications is by runtime

assertion checking, i.e., simply running the Java code and testing for vi-
olations of JML assertions. Runtime assertion checking is accomplished
using the JML compiler jmlc (Section 3.2).

· Given that one often wants to do runtime assertion checking in the testing
phase, there is also a jmlunit tool (Section 3.3) which combines runtime
assertion checking with unit testing.

• Static checking and verification: More ambitious than testing if the
code satisfies the specifications at runtime, is verifying that the code satis-
fies its specification statically. Verifying a specification gives more assurance
in the correctness of code as it establishes the correctness for all possible
code paths, whereas runtime assertion checking is limited by the code paths
exercised by the test suite being used. Of course, correctness of a program
with respect to a given specification is not decidable in general. A verifica-
tion tool must trade off the level of automation it offers (i.e., the amount of
user interaction it requires) and the complexity of the properties and code
that it can handle. There are several tools for statically checking or verify-

3 Most of these tools rely upon an underlying tool that typechecks a Java program and its
JML specification.
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ing JML assertions providing different levels of automation and supporting
different levels of expressivity in specifications. They are:
· The program checker ESC/Java (Section 3.5) [15] can automatically detect

certain common errors in Java code and check relatively simple assertions.
· The program checker JACK (Section 3.8) offers a similar functionality to

ESC/Java, but is more ambitious in attempting real program verification.
· The LOOP tool (Section 3.7) translates JML-annotated code to proof

obligations that one can then try to prove using the theorem prover PVS.
The LOOP tool can handle more complicated specifications and code, but
at the price of more user interaction.

· The CHASE tool (Section 3.6) checks some aspects of frame conditions.

• Tools to help generate specifications: In addition to these tools
for checking specifications, there are also tools that help a developer write
JML specifications, with the aim of reducing the cost of producing JML
specifications. They are:
· The Daikon tool (Section 3.4, [13]) tries to detect likely invariants by

observing the runtime behavior of a program.
· The Houdini tool [14] uses ESC/Java to infer annotations for code.
· The simple tool jmlspec produces a skeleton of a specification file from

Java source.

• Documentation: Finally, in spite of all the tools mentioned above, the
most important ‘tool’ of all is still the human who reads and writes JML
specifications. The jmldoc tool (Section 3.1) produces browsable HTML
from JML specifications, in the style of Javadoc. The resulting HTML is a
convenient format for reading larger bodies of JML specifications.

3.1 Documentation Generation

Since JML specifications are meant to be read and written by ordinary Java
programmers, it is important to support the conventional ways that these
programmers create and use documentation. Consequently, the jmldoc tool
(authored by David Cok and available from Iowa State University) produces
browsable HTML pages containing both the API and the specifications for
Java code, in the style of pages generated by Javadoc [16].

This tool reuses the parsing and checking performed by the JML checker
and connects it to the doclet API underlying Javadoc. In this way, jmldoc
remains consistent with the definition of JML and creates HTML pages that
are very familiar to a user of Javadoc. The jmldoc tool also combines and
displays in one place all of the specifications (inherited, refined, etc.) that
pertain to a given class, interface, method, or field. It also combines annota-
tions across a series of source files that constitute successive refinements of a
given class or interface.
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3.2 Runtime Assertion Checking

The JML compiler (jmlc), developed at Iowa State University, is an exten-
sion to a Java compiler and compiles Java programs annotated with JML
specifications into Java bytecode [10]. The compiled bytecode includes run-
time assertion checking instructions that check JML specifications such as
preconditions, normal and exceptional postconditions, invariants, and history
constraints. The execution of such assertion checks is transparent in that, un-
less an assertion is violated, and except for performance measures (time and
space), the behavior of the original program is unchanged. The transparency
of runtime assertion checking is guaranteed, as JML assertions are not allowed
to have any side-effects [25].

The JML language provides a rich set of specification facilities to write
abstract, complete behavioral specifications of Java program modules [25]. It
opens a new possibility in runtime assertion checking by supporting abstract
specifications written in terms of specification-only declarations such as model
fields, ghost fields, and model methods. Thus the JML compiler represents
a significant advance over the state of the art in runtime assertion checking
as represented by design by contract tools such as Eiffel [32,33] or by Java
tools such as iContract [22] or Jass [3]. The jmlc tool also supports advances
such as (stateful) interface specifications, multiple inheritance of specifications,
various forms of quantifiers and set comprehension notation, support for strong
and weak behavioral subtyping [28,12], and a contextual interpretation of
undefinedness [25].

In sum, the JML compiler brings “programming benefits” to formal inter-
face specifications by allowing Java programmers to use JML specifications as
practical and effective tools for debugging, testing, and design by contract.

3.3 Unit Testing

A formal specification can be viewed as a test oracle [37,2], and a runtime
assertion checker can be used as the decision procedure for the test oracle [11].
This idea has been implemented as a unit testing tool for Java (jmlunit), by
combining JML with the popular unit testing tool JUnit for Java [4]. The
jmlunit tool, developed at Iowa State University, frees the programmer from
writing most unit test code and significantly automates unit testing of Java
classes and interfaces.

The tool generates JUnit test classes that rely on the JML runtime asser-
tion checker. The test classes send messages to objects of the Java classes un-
der test. The testing code catches assertion violation errors from such method
calls to decide if the test data violate the precondition of the method under
test; such assertion violation errors do not constitute test failures. When the
method under test satisfies its precondition, but otherwise has an assertion
violation, then the implementation failed to meet its specification, and hence
the test data detects a failure [11]. In other words, the generated test code
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serves as a test oracle whose behavior is derived from the specified behavior
of the class being tested. The user is still responsible for generating test data;
however the test classes make it easy for the user to supply such test data. In
addition, the user can supply hand-written JUnit test methods if desired.

Our experience shows that the tool allows us to perform unit testing with
minimal coding effort and detects many kinds of errors. Ironically, about
half of our test failures were caused by specification errors, which shows that
the approach is also useful for debugging specifications. In addition, the tool
can report coverage information, identifying assertions that are always true or
always false, and thus indicating deficiencies in the set of test cases. However,
the approach requires specifications to be fairly complete descriptions of the
desired behavior, as the quality of the generated test oracles depends on the
quality of the specifications. Thus, the approach trades the effort one might
spend in writing test cases for effort spent in writing formal specifications.

3.4 Invariant Detection with Daikon

Most tools that work with JML assume the existence of a JML specification,
then verify code against the specification. Writing the JML specification is
left to a programmer. Because this task can be time-consuming, tedious, and
error-prone, the Daikon invariant detector [13], developed at MIT, provides
assistance in creating a specification. Daikon outputs observed program prop-
erties in JML form and automatically inserts them into a target program.

The Daikon tool dynamically detects likely program invariants. In other
words, given profiles of program executions, it reports properties that were
true over those executions. It operates by observing values that a program
computes at runtime, generalizing over those values, and reporting the re-
sulting properties. Like any dynamic analysis, the technique is not sound:
other executions may falsify some of the reported properties. (Furthermore,
the actual behavior of the program is not necessarily the same as its intended
behavior.) However, Daikon uses static analysis, statistical tests, and other
mechanisms to suppress false positives. Even if a property is not true in gen-
eral, Daikon’s output provides valuable information about the test suite over
which the program was run.

Even with modest test suites, Daikon’s output is highly accurate. In one set
of experiments [34], over 90% of the properties that it reported were verifiable
by ESC/Java (the other properties were true, but were beyond the capabilities
of ESC/Java), and it reported over 90% of the properties that ESC/Java
needed in order to complete its verification. For example, if Daikon generated
100 properties, users had only to delete less than 10 properties and to add
another 10 properties in order to have a verifiable set of properties. In another
experiment [35], users who were provided with Daikon output (even from
unrealistically bad test suites) performed statistically significantly better on
a program verification task than did users who did not have such assistance.
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3.5 Extended Static Checking with ESC/Java

The ESC/Java tool [15], developed at Compaq Research, performs what is
called “extended static checking”, static checking that goes well beyond type
checking. It can check relatively simple assertions and can check for certain
kinds of common errors in Java code, such as dereferencing null or indexing
an array outside its bounds. The tool is fully automated, and the user interacts
with it only by supplying JML annotations in the code. Thus, the user never
sees the theorem prover that is doing the actual work behind the scenes.

An interesting property of ESC/Java is that it is neither sound nor com-
plete. This is a deliberate design choice: the aim is to maximize the useful
feedback the tool can give—i.e., the number of potential bugs in the code it
will point out—fully automatically, without requiring full functional specifi-
cations.

In a sense, ESC/Java uses JML annotations to suppress spurious warn-
ing messages. For example, the following precondition causes ESC/Java not
to warn about the possibility of null dereferences on the formal parameter
descript in the body of the method:

//@ requires descript != null;

public String deleteAtAfterNl(String descript) { /* ... */ }

Such annotations also cause ESC/Java to perform additional checks. For
example, the precondition above causes ESC/Java to emit warnings at call
sites where the actual descript parameter may be null. Thus, the addition
of JML annotations helps give better quality warnings, the use of ESC/Java
fosters more annotations, and in turn these annotations help the tool do a
better job of checking code for potential errors.

ESC/Java works by translating a given JML-annotated Java program into
verification conditions [27], which are then passed to an automatic theorem
prover. The ESC/Java User’s Manual [26] provides a detailed description of
the semantics of JML annotations, as they pertain to ESC/Java.

As of this writing, there are still some small syntactic and semantic dif-
ferences between JML and the subset of JML supported by ESC/Java. Joe
Kiniry is working on patches to fix this problem. The next version of ESC/Java
will accept all notation that has been introduced since ESC/Java’s last release,
and it will ignore all non-critical annotations it does not understand.

3.6 CHASE

One source of unsoundness of ESC/Java is that it does not check assignable

clauses. The semantics of these frame axioms are also not checked by the JML
compiler. The CHASE tool [9] tries to remedy these problems. It performs a
syntactic check on assignable clauses, which, in the spirit of ESC/Java, is nei-
ther sound nor complete, but which spots many mistakes made in assignable

clauses.
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3.7 Program Verification with LOOP

The University of Nijmegen’s LOOP tool [21,18] translates JML-annotated
Java code into proof obligations for the theorem prover PVS [36]. One can
then try to prove these obligations, interactively, in PVS. The translation from
JML to formal proof obligations builds on a formal semantics for sequential
Java that has has been formalized in PVS, and which has been extended to
provide a formal semantics for a large part of JML. The verification of the
proof obligations is accomplished using a Hoare Logic [20] and a weakest-
precondition calculus [19] for Java and JML. Interactive theorem proving is
very labor-intensive, but allows verification of more complicated properties
than can be handled by extended static checking with ESC/Java. A recent
paper describing a case study with the LOOP tool, giving the best impression
of the state of the art, is now available [5].

A similar program verification tool for JML-annotated code under devel-
opment is the Krakatoa tool [29]; it produces proof obligations for the theorem
prover Coq, but currently covers only a subset of Java.

3.8 Static Verification with JACK

The JACK [7] tool has been developed at the research lab of Gemplus, a
manufacturer of smartcards and smartcard software. JACK aims to provide
an environment for Java and Java Card program verification using JML an-
notations. It implements a fully automated weakest precondition calculus in
order to generate proof obligations from JML-annotated Java sources. Those
proof obligations can then be discharged using a theorem prover. Currently
the proof obligations are generated for the B [1] method’s prover.

The approach taken in JACK is somewhere between those of ESC/Java
and LOOP, but probably closer to LOOP than to ESC/Java, trying to get
the best of both worlds. On the one hand, JACK is much more ambitious
than ESC/Java, in that it aims at real program verification rather than just
extended static checking, and JACK does not make all the assumptions that
result in soundness issues in ESC/Java, some of which were made to speed
up checking. On the other hand, JACK does not require its users to have
expertise in the use of a theorem prover as LOOP does.

An important design goal of the JACK tool is to be usable by normal
Java developers, allowing them to validate their own code. Thus, care has
been taken to hide the mathematical complexity of the underlying concepts,
and JACK provides a dedicated proof obligation viewer. This viewer presents
the proof obligations as execution paths within the program, highlighting the
source code relevant to the proof obligations. Moreover, goals and hypotheses
are displayed in a Java/JML like notation. To allow developers to work in a
familiar environment, JACK is integrated as a plug-in in the Eclipse 4 IDE.

4 http://www.eclipse.org
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As earlier mentioned, JACK provides an interface to the automatic the-
orem prover of the Atelier B toolkit. The prover can usually automatically
prove up to 90% of the proof obligations; the remaining ones have to be proved
outside of JACK, using the classical B proof tool. However, JACK is meant
to be used by Java developers, who cannot be expected to use the B proof
tool. Therefore, in addition to the proved and unproved states, JACK adds
a “checked” state, that allows developers to indicate that they have manually
checked the proof obligation. In order to better handle those cases, other
different approaches could be investigated, such as integration with test tools
such as jmlunit, integration of other proof assistants, or at least support from
a proof-expert team.

Despite using formal techniques, the goal of JACK is not only to allow
formal methods experts to prove Java applet correctness, but also to allow
Java programmers to obtain high assurance of code correctness. This may be
a way to let non-experts venture into the formal world.

4 Applications of JML to Java Card

Most of the applications of JML and JML tools up to now have targeted
Java Card. Java CardTM is a dialect of Java specifically designed for the
programming of the latest generation of smartcards. Java Card is adapted
to the hardware limitations of smartcards; for instance, it does not support
floating point numbers, strings, object cloning, or threads.

Java Card is a well-suited target for the application of formal methods. It
is a relatively simple language with a restricted API. Moreover, Java Card
programs, called “applets”, are small, typically on the order of several KBytes
of bytecode. Additionally, correctness of Java Card programs is of crucial
importance, since they are used in sensitive applications such as bank cards
and mobile phone SIMs. (An interesting overview of security properties that
are relevant for Java Card applications is available [30].)

JML, and several tools for JML, have been used for Java Card, especially
in the context of the EU-supported project VerifiCard (www.verificard.org).
JML has been used to write a formal specification of almost the entire Java
Card API [31,39,40]. This experience has shown that JML is expressive enough
to specify a non-trivial existing API. The runtime assertion checker has been
used to specify and verify a component of a smartcard operating system [38].

ESC/Java has been used with great success to verify a realistic example
of an electronic purse implementation in Java Card [8]. This case study was
instrumental in convincing industrial users of the usefulness of JML and fea-
sibility of automated program checking by ESC/Java for Java Card applets.
This provided the motivation for the development of the JACK tool discussed
earlier, which is specifically designed for Java Card programs. One of the
classes of the electronic purse mentioned above has provided the most serious
case study to date with the LOOP tool [5].
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Currently, several other case studies are underway, where ESC/Java or the
LOOP tool are being used on Java Card applets, but all of these are subject
to non-disclosure agreements. This is unfortunate, in that these cannot be
discussed here, but it also a positive sign, as it means that these case studies
involve real applications. (In the smartcard business, manufacturers will never
let anyone see source code of real applications without signing an NDA.)

5 Related Work

5.1 Other runtime assertion checkers

Many runtime assertion checkers for Java exist, for example, Jass, iContract,
and Parasoft’s jContract, to name just a few. Each of these tools has their
own specification language, thus specifications written for one tool do not
work in any other tool. And while some of these tools support higher-level
constructs such as quantifiers, all are quite primitive when compared to JML.
For example, none include support for purity specification and checking, model
methods, refinements, or unit test integration. At least one tool (Jass) has
expressed interest in moving to JML as their specification language.

5.2 JML vs OCL

Despite the similarity in the acronyms, JML is very different in its aims from
UML [41]. Unlike UML, which attempts to have notations for all phases of the
analysis and design process, JML has the much more modest aim of describing
the behavior of Java classes and interfaces and recording detailed design and
implementation decisions.

JML does have some things in common with the Object Constraint Lan-
guage (OCL), which is part of the UML standard. Like JML, OCL can be
used to specify invariants and pre- and postconditions. An important differ-
ence is that JML explicitly targets Java, whereas OCL is not specific to any
one programming language. One could say that JML is related to Java in the
same way that OCL is related to UML.

JML clearly has the disadvantage that it can not be used for, say, C++
programs, whereas OCL can. But it also has obvious advantages when it
comes to syntax, semantics, and expressivity. Because JML sticks to the Java
syntax and typing rules, a typical Java programmer will prefer JML notation
over OCL notation, and, for instance, prefer to write (in JML):

invariant b != null && b.length > 5;

rather than the OCL:

inv: b <> null and b->size() > 5

JML supports all the Java modifiers such as static, private, public, etc.,
and these can be used to record detailed design decisions. Furthermore, there
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are legal Java expressions that can be used in JML specifications but that
cannot be expressed in OCL.

More significant than these limitations, or differences in syntax, are differ-
ences in semantics. JML builds on the (well-defined) semantics of Java. So, for
instance, equals has the same meaning in JML and Java, as does ==, and the
same rules for overriding, overloading, and hiding apply. One cannot expect
this for OCL. In fact, a semantics for OCL was only recently proposed [6].

In all, we believe that a language like JML, which is tailored to Java,
is better suited for recording the detailed design of a Java programs than a
generic language like OCL. Even if one uses UML in the development of a Java
application, it may be better to use JML rather than OCL for the specification
of object constraints, especially in the later stages of the development.

6 Conclusions

We believe that JML presents a promising opportunity to introduce formal
specification to industry. It has the following strong points:

(i) JML is easy to learn for any Java programmer, since its syntax and se-
mantics are very close to Java.

We believe this a crucial advantage, as the biggest hurdle to introducing
formal methods in industry is often that people are not willing, or do not
have the time, to learn yet another language.

(ii) There is no need to invest in the construction of a formal model before
one can use JML. Or rather: the source code is the formal model. This
brings two further advantages:
• It is easy to introduce the use of JML gradually, simply by adding the

odd assertion to some Java code.
• JML can be used for existing (legacy) code and APIs. Indeed, most

applications of JML and its tools to date (e.g., [5,8,39,40]) have involved
existing APIs and code.

(iii) There is a (growing) availability of a wide range of tool support for JML.

Because JML does not impose a particular design method on its users,
unlike B, and because it is tailored to specifying both the syntactic interface of
Java code and its behavior, unlike UML, VDM, or Z, JML is better suited than
these alternative languages for documenting the detailed design of existing
Java programs.

As a common notation shared by many tools, JML offers users multiple
tools supporting the same notation. This frees them from having to learn a
whole new language before they can start using a new tool. The shared nota-
tion also helps the economics both for users and tool builders. Any industrial
use of formal methods will have to be economically justified, by comparing
the costs (the extra time and effort spent) against the benefits (improvements
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in quality, number of bugs found). Having a range of tools, offering different
levels of assurance at different costs, makes it much easier to start using JML.
One can begin with a technique that requires the least time and effort (perhaps
runtime assertion checking) and then move to more labor-intensive techniques
if and when that seems worthwhile, until one has reached a combination of
tools and techniques that is cost-effective for a particular situation.

There are still many opportunities for further development of both the
JML language and its tools. For instance, we would also like to see support
for JML in IDEs and integration with other kinds of static checkers. We
believe that, as a common language, JML can provide an important vehicle
to transfer more tools and techniques from academia to industry.

More generally, there are still many open issues involving the specification
of object-oriented systems. When exactly should invariants hold? How should
concurrency properties be specified? JML supports only behavioral subtyping,
but subtyping in Java is used for implementation inheritance as well; how can
we specify non-behavioral inheritance? There are also semantics issues with
frame axioms, pure methods, and aliasing. Such subtleties are evidenced by
the slightly different ways in which different tools approach these problems.

As witnessed by the development of the JACK tool by Gemplus, Java Card
smartcard programs may be one of the niche markets where formal methods
have a promising future. Here, the cost that companies are willing to pay
to ensure the absence of certain kinds of bugs is quite high. It seems that,
given the current state of the art, using static checking techniques to ensure
relatively simple properties (e.g., that no runtime exception ever reaches the
top-level without being caught) seems to provide an acceptable return-on-
investment. It should be noted that the very simplicity of Java Card is not
without its drawbacks. In particular, the very primitive communication with
smartcards (via a byte array buffer) does not allow any abstract modelization.
It will be interesting to investigate if J2ME (Java 2 Micro Edition), which
targets a wider range of electronic consumer products, such as mobile phones
and PDAs, is also an interesting application domain for JML.
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