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Abstract. The Java Modeling Language (JML) is a formal specifi-
cation language for Java that allows developers to specify rich soft-
ware contracts for interfaces and classes, using pre- and postconditions
and invariants. Although JML has been widely studied and has ro-
bust tool support based on a variety of automated verification technolo-
gies, it shares a problem with many similar object-oriented specification
languages—it currently only deals with sequential programs. In this pa-
per, we extend JML to allow for effective specification of multi-threaded
Java programs. The new constructs rely on the non-interference notion
of method atomicity, and allow developers to specify locking and other
non-interference properties of methods. Atomicity enables effective spec-
ification of method pre- and postconditions and supports Hoare-style
modular reasoning about methods. Thus the new constructs mesh well
with JML’s existing features. We validate the specification language de-
sign by specifying the behavior of a number of complex Java classes de-
signed for use in multi-threaded programs. We also demonstrate that it
is amenable to automated verification using model checking technology.

1 Introduction

The use of rich source-level specification languages for expressing correctness
properties of object-oriented programs is growing in practice. Specification lan-
guages such as the Java Modeling Language (JML) [1–4] and Spec# [5] provide
a wide range of light-weight annotations (e.g., specifying non-nullness of vari-
ables of reference type) as well as constructs for writing specifications of full
functional behaviors of class implementations that can be checked by a vari-
ety of verification technologies including static analysis, run-time monitoring,
model checking, and theorem-proving. JML is a behavioral interface specifica-
tion language that allows developers to specify both the syntactic and behavioral
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interface of a portion of Java code. It supports the design by contract paradigm
[6] by including notation for pre- and postconditions and invariants. JML uses
Java’s expression syntax and adds features for: universal (\forall) and existen-
tial (\exists) quantification over object instances as well as basic types, such as
integers, and constructs for expressing properties of heap allocated data (such as
\reach which returns the set of objects reachable from a particular reference).
These allow developers to create natural and readable statements of relatively
complete behavioral specifications of Java programs.

JML has proven to be an effective vehicle for bringing together a number
of research teams [1] seeking to (a) extend the logical foundations of specifica-
tion formalisms needed for addressing semantically complex language features
such as dynamic dispatch, exceptions, dynamic object creation, and (b) build
tool support for automated and computer-assisted reasoning about real-world
Java applications. One example where progress in these areas has been partic-
ularly strong is in the domain of Java Card-based smart-cards where several
teams working on the VerifiCard European IST project have used JML to verify
properties of industrial Java Card applications from companies such as Schlum-
bergerSema Cards and Terminals and Gemplus. At Gemplus the researchers
implemented their own JML static verification tool, JACK, inspired by ESC/-
Java [7].

Despite the success of using JML to specify programs written in sequential
Java and its Java Card dialect, JML’s support for concurrency “is still in its
infancy” [4]. Although many interesting programs are sequential, the flexibility
that accompanies concurrent programming in terms of further modularizing the
design (thread modularity), means that most moderately complex systems are
programmed with some sort of concurrency modality (multi-threading, multi-
processing, etc.). Moreover, multi-threading capabilities are becoming more ac-
cessible to programmers since languages like Java and C# provide direct lan-
guage support for threads, while other languages provide sophisticated support
via libraries (e.g., POSIX threads). Many otherwise sequential programs often
need to use multi-threading to deal with user interface events in such languages.
Furthermore, domain-specific languages like Java Card, though currently sequen-
tial, plan to incorporate threading support in upcoming versions.

Unfortunately, reasoning about multi-threaded programs is very difficult, and
program errors often result from unanticipated thread interleavings and from the
improper use of thread synchronization. These reasoning difficulties stem from
several factors: the global nature of the shared resources in a multi-threaded
program, the addition of “extra” program code to synchronize use of shared
resources (which can lead to race conditions, deadlocks, etc.), and the explosion
of the number of potential execution traces due to interleaving of threads.

Most existing specification and checking tools for multi-threaded programs
focus on properties such as absence of race conditions, establishing mutual exclu-
sion, and simple event ordering and temporal properties (e.g., capturing proper
ordering of calls to APIs). However, they typically ignore specification and ver-
ification of strong functional properties and complex data structure invariants,
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even though such properties are easily written in sequential specification lan-
guages such as JML. The inadequacies of existing specification formalisms for
multi-threaded implementations stems from the challenges of dealing with thread
interference in the manipulation of shared (heap) data. One cannot simply ap-
ply Hoare-style logics using method pre- and postconditions to reason modu-
larly, because method execution is often non-atomic — the actions of other
threads may interfere with the thread executing the method and thus render
invalid assumptions captured in method preconditions and guarantees captured
in postconditions.

Due to the pervasiveness of multi-threading and the increasing use of multi-
threaded object-oriented code in embedded and mission- and safety-critical ap-
plications, it is necessary to extend sequential specification languages like JML
to support specification and reasoning about multi-threaded programs. Further-
more, these extensions should allow both light-weight annotations and more
complete, functional specifications, and should work with multiple different rea-
soning tools. This paper advances toward these goals by making the following
contributions.

– We identify situations in which the current JML fails to enable effective
specification and modular reasoning for multi-threaded programs.

– We identify specification forms that we and other researchers have found
useful for multi-threaded programs. This includes (a) various light-weight
annotations that can be leveraged by automated checking technologies and
(b) the use of atomicity specifications to achieve modular reasoning about
methods.

– We show how to integrate these forms into JML in a way that enables both
reasoning about data values and concurrency concerns.

– We validate the design of this enhanced version of JML by using it to specify
properties of a number of Java libraries designed for concurrency, including
most of the concurrent data structure classes from java.util.concurrent,
which includes some very intricate concurrent Java code (the full collection
of these specified examples are posted on our project web-site [8]).

– We establish that these specification formalisms are amenable to effective
automated verification, by providing experimental results of checking these
using a verification framework built on top of our Bogor software model
checker (extended from our previous work on model checking JML [9] and
atomicity specifications [10]).

Although we have used JML for this work, we believe the ideas could also be
adapted to other specification languages such as Spec# and Eiffel.

In the next section, we describe the problems addressed in this work, in par-
ticular, the limitations of JML for concurrent programs. Section 3 gives back-
ground on the concept of atomicity, on which our approach is based. Section 4
introduces the new set of annotations, giving examples and an assessment of
the issues addressed by each annotation. Section 5 reports on an evaluation of
using JML extensions to specify Java classes and of checking such specifications
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using a customized model checker. Section 6 surveys related work, and Sec. 7
concludes.

2 The Problem

In this section we discuss the semantical and expressiveness problems that need
to be solved to allow effective specification and reasoning about both data values
and proper thread behavior in a multi-threaded program.

2.1 Interference

Interference causes problems that affect modular reasoning about data values in
multi-threaded programs. These semantical problems are best illustrated by an
example.

Consider the method in Fig. 1. This is a method from a concurrent linked
queue class, and is adapted from Lea’s book [11]. This method extracts an ele-
ment from the queue. The figure shows an invariant for the class at the beginning
of the class declaration. Invariants must be satisfied by the instances of the class
at every method’s pre- and post-state. The figure also shows a behavioral speci-
fication of the method written in JML, without using any of the extensions pro-
posed in this paper. JML’s annotations are written as special Java comments that
begin with an at-sign (@). The specification of the extract() method appears
just before its header. This specification is comprised of two normal_behavior

specification cases, each of which has a requires clause, which gives its pre-
condition, an assignable clause, which gives a frame axiom, and an ensures

clause, which gives its postcondition. The first case applies when the list is empty
at the beginning of the method’s execution (head == last), and the other when
the list is non-empty (head != last). In the first case the method must return
null, without assigning to any locations. Otherwise, the method updates head

to the next node in the queue (head.next), and must return the object that was
contained in that node (since head is a sentinal, as described by the invariant).
To satisfy the invariant the method must also make the value of the new head
null. The method may assign to both head and head.next.value to achieve
this behavior.

The meaning of a JML method specification with two or more specification
cases, combined with “also”, is that the caller has to satisfy the disjunction of
the preconditions in the given specification cases, and the implementation has to
satisfy the postconditions of all specification cases for which the preconditions
held [4, 12]. Thus, in Fig. 1 the caller has no obligations, since the disjunction of
the preconditions of the two specification cases is the tautology “head == last

|| head != last”.

Internal Interference Although the specification given in Fig. 1 seems sensi-
ble, it is wrong for a multi-threaded environment, because it does not account for
interference. An example of interference is depicted in Fig. 2. The queue is empty
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public class LinkedQueue {
protected /*@ spec_public non_null @*/ LinkedNode head;
protected /*@ spec_public non_null @*/ LinkedNode last;
//@ public invariant head.value == null;

/*@ public normal_behavior
@ requires head == last;
@ assignable \nothing;
@ ensures \result == null;
@ also public normal_behavior
@ requires head != last;
@ assignable head, head.next.value;
@ ensures head == \old(head.next) && \result == \old(head.next.value);
@*/

public synchronized Object extract() {
synchronized (head) {

Object x = null;
LinkedNode first = head.next;
if (first != null) {

x = first.value;
first.value = null;
head = first;

}
return x;

}
}

Fig. 1. JML Specification for the method extract().

in the method’s pre-state. Since this method is synchronized, the first instruc-
tion it executes is to acquire the lock on this. Then, in this trace, another thread
is immediately scheduled that executes a call to method insert(Object), which
is synchronized on a lock other than this, and executes it to completion. (The
insert call synchronizes on a different lock to allow more concurrency than if
it synchronized on this.) When the extract() call in the first thread resumes
the queue is no longer empty and the method will find a non-null element to
extract. Since the list was empty in the pre-state, the first specification case
should apply, but the interference causes a non-null value to be returned which
violates the postcondition of that case.

lock(head)
Post: head != last

Post: \result == null   does not hold

extract() completes

insert() executes completely

Call to insert(Object)lock(this) context switch

Call extract() with Pre: head == last

Thread 1 Thread 2

Fig. 2. Execution of extract() call interleaved with a call to insert(Object).

We call the problem illustrated by Fig. 2 internal interference. This problem
arises when another thread affects the current thread’s execution of a method,
by changing data that the method can observe. Standard Hoare logic does not
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allow for such interference, and thus when reasoning about the correctness of the
implementation of a method in Hoare logic, one assumes that properties, such
as the method’s precondition, do not change except by actions of the method
itself.

Runtime and static analysis tools for sequential programs exploit this seman-
tics when they work with just two states: the pre-state (at the beginning of the
method’s execution) and the post-state (at the end). In a multi-threaded setting,
however, such analyses must consider all possible interleavings to safely account
for possible interference. This is considerably more expensive than restricting
reasoning to pre- and post-states; furthermore, it is non-modular.

External Interference External interference happens when another thread
makes observable state changes between a method call and the method’s entry,
or between the method’s exit and the caller’s resumption. Just as internal inter-
ference can invalidate standard Hoare-style reasoning about the correctness of a
method implementation, external interference can disrupt reasoning about the
correctness of client code that calls that method.

Figure 3 illustrates the problem caused by external interference. Suppose
the queue has exactly one element. The isEmpty() method executes without
interleaving and returns false. However, between the return of isEmpty() and
the resumption of the caller, another thread interleaves a call to extract(),
which removes the lone element. The result is that upon resumption of the caller’s
thread, the postcondition no longer describes the queue correctly, as the queue
is now empty. Similar interference can happen with respect to the precondition
established by the caller and observed upon method entry. As can be seen from
this example, external interference breaks the modularity of reasoning, thereby
rendering existing sequential analysis techniques inapplicable.

Resume in caller

Call to extract() context switch

extract() executes completely

Post : \result == false

isEmpty() executes sequentially
Pre : queue has one element

Thread 1 Thread 2

Fig. 3. Execution of extract() call interleaved immediately after call to isEmpty().

More generally, these types of interference mean that specifications cannot
serve as behavioral abstractions in the presence of concurrency. That is, one
cannot use method specifications to reason about the correctness of an imple-
mentation without knowing some details of its calling context, or reason about
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calls to the method without knowing some details of its implementation. To fix
these problems, while still allowing modular reasoning, the specification language
must be enriched.

2.2 Expressing Thread-safe Behavior

There are a variety of ways that one might incorporate features into a behavioral
specification language to support specification in the presence of concurrency.
Our approach has been motivated primarily by the results of a survey of exist-
ing Java implementations, to understand the mechanisms used by developers to
assure proper concurrent execution, and of existing specification features in the
JML language. We wanted to minimally extend JML, and yet enable modular
behavioral specification of a wide range of existing multi-threaded Java imple-
mentations.

Our fundamental observation is that while programmers may use a vari-
ety of mechanisms to achieve thread safety, the core notion of safety is one of
non-interference. Interference can be avoided through the use of synchroniza-
tion, which prevents unwanted interleaving, or by controlling access to data,
which prevents unwanted access to otherwise shared objects.5 When we speak
of thread safety, we mean either synchronization or controlled access to data, or
some combination of both. We have identified several fundamental notions that
must be included in JML or similar languages to support thread-safe behavioral
specification.

Locking specifications Programmers use a variety of locking disciplines and
the language must be rich enough to capture that variety. It is necessary to allow
specification of:

– what locks a method will acquire and release during its execution,
– what locks protect particular parts of an object’s state,
– that some objects are used as locks, and when such lock objects are locked,
– the set of locks held by the current thread, and
– that an object is protected by some lock held by the current thread.

We have also found it necessary to specify the conditions under which a method
may block [13].

Data confinement specifications Excessive locking can reduce parallelism
and hence performance. For this reason, many implementations avoid locking
and instead rely on properties of a program’s data layout to ensure thread safety.
It is necessary to allow specification of:

– what aliasing and ownership patterns exist among objects [14–16],
– that an object is local to a thread, and
– the effect of a method’s execution on existing locations (i.e., a frame axiom

[17]).

5 We do not treat extra-program forms of concurrency control, such as scheduling.



8

Serializability specifications Locking and data confinement specifications
are useful in specifying the conditions under which multi-threaded executions
are equivalent to sequential executions. It is necessary to allow specification of
this high-level serializability property of methods. We have found two differ-
ent strengths of such specification to be useful in practice: atomicity and in-
dependence. These concepts and the extensions to JML that support them are
described in the next sections.

3 Background on Atomicity and Independence

Our approach to addressing the interference problems above is based on the con-
cepts of atomicity [18, 19] and independence [20]. A region of code statements
(e.g., a method body) is said to be atomic if the statements in the region are
serializable – that is, if for any execution trace containing the region’s state-
ments (possibly interleaved with statements executed by other threads) there
is an equivalent execution trace where the region’s statements are executed se-
quentially (i.e., executed without any interleavings from other threads). If a code
region is atomic, then it is sound to reason about its actions as if they occur
in a single atomic step – in essence, allowing one to use traditional sequential
reasoning techniques on the code region. From another point of view, instead
of having to consider a number of intermediate states produced by thread in-
terleavings, for an atomic region it is sound to consider only two states: the
pre-state before the conceptual single atomic step begins, and the post-state af-
ter the conceptual single atomic step completes. That is, any interference from
the other threads is benign, however, the single atomic step may interfere with
other threads’ computations.

There are many ways to establish the atomicity of a code region. In the
next two subsections we describe two popular approaches; these approaches will
motivate the JML notations that we develop in the following sections.

3.1 Lipton’s Reduction Theory

Lipton introduced the theory of left/right movers to aid in proving properties
about concurrent programs [18]. In Lipton’s model, a code region is thought of
as a sequence of primitive statements (e.g., Java bytecodes), which he called
transitions. Proofs about the transitions in a program can be made simpler if
one is allowed to assume that a particular sequence of transitions is indivisible.
To conclude that a program, P , which contains a sequence of transitions, S, is
equivalent to the reduced program, P/S, in which S is modeled as one indivisible
transition, Lipton proposed the notion of a commuting transition. A commuting
transition is a transition that is either a right mover or a left mover. Intuitively,
a transition, α, is a right (left) mover if, whenever α is followed (preceded) by
another transition, β, of a different thread, then α and β can be swapped without
changing the resulting state. Concretely, a lock acquire, such as the beginning
of a Java synchronized block, is a right mover, and the lock release at the end
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Fig. 4. Left/Right movers and atomic blocks

of such a block is a left mover. Any read or write to a variable or field that is
properly protected by a lock is both a left and right mover, which is termed a
both mover .

To illustrate the application of these ideas, we repeat the example given in
[19]. Consider a method m that acquires a lock, reads a variable x protected by
that lock, updates x, and then releases the lock. Suppose that the transitions of
this method are interleaved with transitions E1, E2, and E3 of other threads,
as shown at the top of Fig. 4. Because the actions of the method m are movers
(acq and rel are right and left movers, respectively, and the lock-protected
assignment to x is a both mover), Fig. 4 implies that there exists an equivalent
execution (shown at the bottom of the figure), where the operations of m are
not interleaved with operations of other threads. Thus, it is safe to reason about
the method as executing in a single atomic step.

One can define an atomic region as one that satisfies the pattern of statements
R∗N?L∗, where R∗ denotes 0 or more right mover statements, L∗ denotes 0 or more
left mover statements, and N? denotes 0 or 1 statements that are neither left nor
right movers. That is, an atomic region can contain at most one non-commuting
(i.e., possibly interfering) statement. The block shown in Fig. 4 clearly matches
this pattern as it has the form : right, both, both, left.

In other words, an atomic region can have a single externally-observable
effect in its body while it is executed. However, note that an atomic method can
have multiple accesses to heap objects as long as they are either thread local or
lock-protected accesses [21]. This is because accesses to objects local to a thread
and accesses to objects protected by locks cannot be observed by other threads
until these objects become shared or until the locks are released, respectively.
Similarly, lock-acquires and lock-releases on an object that is already locked by
a thread cannot be observed by other threads until that lock is released.

Lipton also stated two technical conditions necessary to prove that the set
of final states of a program P equals the set of final states of the reduced pro-
gram P/S. The first of these, R1, [18, p. 719] states that “if S is ever entered
then it should be possible to eventually exit S.” This is a fairly strong liveness
requirement that can be violated if, for example, S contributes to a deadlock
or livelock, or fails to complete because it performs a Java wait and is never
notified. Restriction R2 is that “the effect of statements in S when together
and separated must be the same.” This is essentially stating an interference-free
property from the other threads for S: any interleavings between the statements
of S do not affect the final store it produces.
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3.2 Independent Statements

Statements that are both movers are also referred to as independent statements
since they can commute both to the left and the right of other program state-
ments. We say that a code region is independent if each statement within the
region is independent. Thus, an independent code region satisfies the pattern of
statements I∗, where I∗ denotes 0 or more both mover statements. An indepen-
dent region is totally non-interfering, and thus is trivially atomic.

Our specification methodology for reasoning about method calls within con-
texts will rely on the fact that independent regions have pleasing composability
properties. Sequentially composing two independent regions yields an indepen-
dent region, but composing two atomic regions may not yield an atomic region
if each region contains a non-mover. Moreover, the sequential composition of
an independent region and an atomic region is an atomic region (since both
movers can serve as either left or right movers). Intuitively, calling a method
M2 from inside of a method M1 represents the sequential composition of three
code regions (the part of M1 before the call, the body of M2, the rest of M1).
Thus, if one takes an atomic method, M1, and inserts into its body a call to an
independent method, M2, then M1 remains atomic. However, if the inserted call
is to an atomic method, M3, then M1 does not necessarily remain atomic.

Finally, we note that for a region to be independent, one does not have to
establish Lipton’s R1 liveness condition to ensure the existence of an equivalent
serialized trace (it is the asymmetric nature of the left and right movers in the
criterion for atomic regions that necessitates the liveness condition, R1).

4 Introducing Concurrency into JML

Our approach for introducing concurrency into JML is to separate the concern
of property specification for methods into two parts: (1) atomicity and inde-
pendence properties, and (2) specification of sequential (or functional) behavior.
This is an old idea, but quite useful. What we claim is new is the language de-
sign, which provides necessary and sufficient constructs to specify a wide range
of multi-threaded programs.

In what follows we describe just the new JML constructs relating to spec-
ification of atomicity and independence and to expressing locking and other
properties specific to multi-threaded programs. We illustrate the new constructs
using examples from Doug Lea’s and Java 1.5’s concurrent libraries.

4.1 Locking Notations

Locking is an important aspect of concurrent behaviors, since it is the usual
mechanism used to achieve atomicity. So we need several notations that allow
for the specification of locking behaviors. These notations also allow modular
checking of atomicity specifications (described in Sec. 4.3).

JML already has several notations that can be used to specify information
about locking. The monitors_for clause allows specifying the locks that protect
the access to a given field. The syntax of this clause is:
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〈monitors-for-clause〉 ::= monitors_for 〈ident〉 <- 〈store-ref-list〉 ;
The meaning is that all of the (non-null) locks named in the 〈store-ref-list〉 must
be held by a thread in order to access the field ident. (In JML, a 〈store-ref-list〉 is
a comma-separated list of access expressions, which includes identifiers, field and
array accesses, and various patterns [4].) An example in Sec. 4.4 demonstrates
the use of the monitors_for clause.

Finally, the \lockset() expression returns an object, of type JMLObjectSet,
that represents the set of all locks held by the current thread.

The first new construct we add to JML is the locks clause. This clause can
appear in the body of a specification case after the heading part (in which the
requires clause appears). Its syntax specifies a list of locks:

〈locks-clause〉 ::= locks 〈store-ref-list〉;
The locks clause accomplishes two different purposes. First, it is an explicit
statement of the locks that the current method acquires (and releases) during its
execution. The meaning is that, on any given execution (where the precondition
is satisfied), the method will lock all the locks in the given list. Second, the locks
clause states an implicit condition for independence. In general, a locks clause
of the form:

locks l1, . . . , ln;

desugars to an ensures clause of the form:

ensures \old(\lockset().has(l1) && . . . && \lockset().has(ln))
==> \independent;

Therefore, if another method calls the method with the locks clause in a context
where all the locks in the list are held, then the callee must be guaranteed to be
independent (see Sec. 4.4). This helps modularly verify atomicity specifications.
Figure 5 shows the use of the locks clause in the method extract().

For an instance (static) method, the locks clause has a default value of
this (the class object) if the method is specified as synchronized, otherwise it
defaults to \nothing. The default for synchronized methods is useful because
many concurrent methods in Java synchronize on this.

Finally, we add a predicate, \lock_protected, with the following syntax.

〈lock-protected-expression〉 ::= \lock_protected(〈store-ref〉)
An expression such as \lock_protected(o) states that the object referenced by
o is access-protected by some nonempty set of locks, and all of those locks are
held by the current thread. Notice that this is a very strong property: the access
is restricted with respect to the object, not the reference variable, therefore if
the object is aliased, this property states that access to all the aliases is access-
restricted by the lock-set of this object. The identities of these locks are not
specified. This notation allows one to specify locking behavior, while hiding the
details of locks involved. Verification of \lock_protected(x.f) would use the
\monitors_for clause for f in x’s class.
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public class BetterLinkedQueue {
protected /*@ spec_public non_null rep @*/ LinkedNode head;
protected /*@ spec_public non_null rep @*/ LinkedNode last;
//@ public invariant head.value == null;

/*@ public normal_behavior
@ requires head == last;
@ locks this, head;
@ assignable \nothing;
@ ensures \result == null;
@ also public normal_behavior
@ requires head != last;
@ locks this, head;
@ assignable head, head.next.value;
@ ensures head == \old(head.next) && \result == \old(head.next.value);
@*/

public /*@ atomic @*/ synchronized /*@ readonly @*/ Object extract() {
synchronized (head) {

/*@ readonly @*/ Object x = null;
/*@ rep @*/ LinkedNode first = head.next;
if (first != null) {

x = first.value;
first.value = null;
head = first;

}
return x;

}
}

Fig. 5. Extended JML specification for extract().

4.2 Heap Restriction Notations

In addition to locking, thread safety can also be achieved by restrictions on
references. JML’s heap restriction notations are aimed at specifying how local
variables may refer to objects in the heap, and how these objects may refer
to each other. They allow dealing with issues like representation exposure [15]
and other kinds of unwanted aliasing that would otherwise prevent modularly
checking atomicity specifications. For example, consider the method extract()

in Fig. 1. This method accesses the field head by first acquiring the lock on the
object, so as to ensure atomicity. However, if there is representation exposure,
in particular if there is another reference to the object pointed to by head, then
that alias might be held by another thread. Thus one would have to examine
other code in the program to rule out access by some other thread to the state
of the object head refers to, in particular to the field head.next. In other words,
representation exposure of this sort would necessitate a non-local analysis of the
program to rule out such possible interference.

To prevent these problems we take advantage of the Universe type system
[16], an ownership type system that already exists in an experimental form in
JML. This type system adds the modifiers rep and readonly to declarations.

The rep modifier can be used on field declarations. It states that the object
referenced by the specified field is part of the representation of the given class.
There can be no references from outside an object of the class to such repre-
sentation objects. From outside the class, one can only refer to the enclosing
object, which is the owner of the representation objects. For example, in Fig. 5
the fields head and last are rep fields, therefore there can be no external aliases



13

/*@ normal_behavior
@ requires c != null && \thread_local(c);
@ assignable elementCount, elementData;
@ ensures elementCount == c.size() && \fresh(elementData);
@also
@ exceptional_behavior
@ requires c == null && \thread_local(c);;
@ assignable \nothing;
@ signals (Exception e) e instanceof NullPointerException;
@*/

public /*@ atomic @*/ Vector(Collection c) {
elementCount = c.size();
elementData = new Object[(int)Math.min((elementCount*110L)/100,Integer.MAX_VALUE)];
c.toArray(elementData);

}

Fig. 6. Extended JML specification for a constructor in java.util.Vector.

to the objects to which these fields refer, and hence no representation exposure.
This enables the modular verification of the atomicity specification.

The readonly modifier is a type modifier. It marks a reference as read-only,
meaning that the object cannot be modified through that reference. Read-only
references are not necessarily owned by an object containing the readonly field,
and it is often the case that such references are aliased externally. The idea is
that only the identity of a readonly object matters to the abstract state of the
enclosing object. (JML will eventually enforce various restrictions on access to
read-only objects in assertions.)

The notations just discussed deal with ownership between objects. Equally
important in concurrent programs is the ownership of object by threads. An
object o is owned by a thread t if only thread t can reach o by a reference chain.
This condition guarantees that there cannot be a race condition on o, because o
is not shared. We introduce the notation \thread_local(o) with the meaning
that o is owned by the current thread. The general syntax is as follows.

〈thread-local-expression〉 ::= \thread_local ( 〈store-ref〉 )
This notation is useful for modular verification of atomicity, because accesses to
thread local objects are independent (non-interfering).

For example, consider the constructor from Java’s Vector class shown in
Fig. 6. In general, constructors are independent because the constructed object
is not reachable from any other thread. However, if the constructor takes object
arguments to initialize the internal state of the constructed object, then its
execution might not be atomic. The problem is that the argument object might
be concurrently modified by other threads. To account for this, we require in the
precondition to the constructor that the argument collection is thread local.

4.3 Atomicity Modifier

We introduce atomicity specification into JML with a new method modifier,
atomic. This specifies that, when a method is invoked in a state that meets
its precondition, its implementation must ensure that the resulting execution is
serializable. This modifier is inherited by overriding methods. Fig. 5 shows how
we use this new modifier to specify extract() from Fig. 1.
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Checking that a method declared to be atomic is actually atomic can be done
in a variety of ways. For example, one could prove that the code is reducible
by Lipton’s theory [19, 22] or by using the notion of independent transitions.
Another technique is used in the Atomizer [23], which dynamically checks that
lock acquisitions and releases are properly nested and that all accesses to shared
data is lock protected. The monitors_for clause would be used to determine
what locks protect what pieces of data.

By imposing an additional obligation to guarantee sequential executions on a
method’s implementation, the atomic modifier simplifies the implementation’s
proof of functional correctness. The functional correctness proof can assume that
the execution is serializable, thus avoiding internal interference. For example, in
the method extract() specified in Fig. 5, the postcondition of each specification
case must hold only for traces that are equivalent to sequential traces.

This division of proof obligations for implementations allows proofs of func-
tional correctness to be separated from synchronization details. The advantage in
focusing on the sequential traces are that they are much easier to reason about.
However, when combined with the additional proof of atomicity, one still gets a
strong correctness guarantee about the complete behavior of the implementation.

From the caller’s point of view, there is no potential for internal interfer-
ence by atomic methods, and thus the caller only has to worry about external
interference. To avoid external interference, the caller must ensure that objects
needed to preserve the truth of any precondition or postcondition are thread
safe (e.g., locked or local to the caller’s thread [21]).

It is also possible for an atomic method to transfer some of its obligation to
ensure atomic execution to the caller, by stating a precondition involving locks
or thread ownership. For example, an atomic method can require some locks to
be held before being called, using a precondition such as \lockset.has(lock),
which says that the current thread holds the lock named lock. Such a precon-
dition may have the added benefit of preventing external interference. Indeed,
having the ultimate clients obtain locks may be sensible from an overall design
standpoint (via an end-to-end argument [24]). Figure 7 show an example of this
case, in which the method inc() transfers the responsibility of holding the lock
on lock to the caller. (This ability to transfer some obligation to the caller shows
how atomic is different than Java’s synchronized modifier.)

Finally, in many concurrent classes, all methods should be atomic. To allow
a designer to state this, the atomic keyword can be used in a class declaration.
(Edwin, you deleted having this for interfaces. I don’t see why. – Gary) Such a
modifier simply states that all the methods declared in the type’s declaration
are atomic. This type modifier is not inherited by subtypes.

4.4 Independent Predicate

A method execution is independent if all of its transitions are independent. For
example, accesses to objects local to the thread and accesses to objects that
are protected by locks are all independent transitions, since the other threads
cannot observe such accesses. To specify this property of a method execution,
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public class ArrayBlockingQueue<E> {
private /*@ spec_public non_null rep @*/ final E[] items;
//@ monitors_for items <- lock;
private /*@ spec_public rep @*/ final ReentrantLock lock;

/*@ normal_behavior
@ requires lock.isLocked() && 0 < i && i < items.length;
@ ensures \result == \old((i + 1) % items.length) && \independent;
@*/

final /*@ atomic @*/ int inc(int i) {
return (++i == items.length)? 0 : i;

}

Fig. 7. Extended JML specification for inc().

we introduce a new specification predicate, \independent. This predicate can
only be used in postconditions.

An example that shows how independence can be used to avoid external
interference is java.util.concurrent.ArrayBlockingQueue’s method inc().
This method is specified in Fig. 7. The precondition states that the method
must be called from a context in which lock is locked. Since items is protected
by lock, due to the monitors_for declaration, and since i is a parameter of
the method, no other thread can access the data used by inc() and cause any
interference. Thus, when the precondition is met, this method’s executions are
independent. Furthermore, since the caller must hold the lock, and since the
result is not accessible to other threads, calls cannot suffer external interference.
This illustrates one way that the JML extensions can be used to avoid external
interference.

4.5 Blocking Behavior and Commit Atomicity

In this section we describe notations for handling methods that wait for some
condition to become true before they proceed to take some (atomic) action. Such
methods have a blocking behavior.

Consider the method take(), from ArrayBlockingQueue in Java 1.5, as
shown in Fig. 8. This method takes an element from the queue, but if the list is
empty, it waits until there is an element to remove. The method thus has two
different synchronization conditions: it must lock this.lock, specified by the
locks clause, and it must wait for the list to be non-empty.

To specify the blocking behavior of methods, we use two notations. The first
is a special statement label, commit. If this label is not present in a method,
it is implicitly assumed at the method body’s end. This label gives a commit
point for the method; when execution reaches the commit point, the method is
no longer blocked and the rest of the method’s execution must be atomic. This
idea is related to the concepts of commitment in database transactions and the
notion of “commit atomicity” introduced by Flanagan [25].

The second notation, adapted from Lerner’s work [13], is JML’s when clause:

〈when-clause〉 ::= when 〈predicate〉 ;
Its meaning is explained, in part, using the commit label. If the when clause’s
predicate does not hold at the start of the method’s execution, then the method
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/*@ public normal_behavior
@ locks this.lock;
@ when count != 0;
@ assignable items[takeIndex], takeIndex, count;
@ ensures \result == \old(items[takeIndex]) && takeIndex == \old(takeIndex + 1)
@ && count == \old(count - 1);
@*/

public /*@ atomic @*/ E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {

try {
while (count == 0)

notEmpty.await();
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to non-interrupted thread
throw ie;

}
/*@ commit: @*/ E x = extract();
return x;

} finally {
lock.unlock();

}
}

Fig. 8. Extended JML specification for take().

will block, waiting until the predicate is true. A method’s execution is considered
blocked if it has started but not yet reached its commit point. If the method is
blocked, it is not guaranteed to be able to proceed to its commit point the first
time the predicate holds. However, if the method proceeds to its commit point,
then the predicate must hold at its commit point. This semantics says nothing
about the protocol used to wait for the condition to become true; for example,
a busy wait loop might be used. The when clause by default has a value of true
(for JML’s heavyweight specification cases).

Figure 8 illustrates the use of the when clause and the commit label. Method
take() removes an element from the queue, and blocks if the queue is empty.
The when clause in Fig. 8 says that the method may proceed only when count

is not zero. The commit point of this method is where the commit label appears,
right after the loop that checks for the blocking condition.

4.6 Notations for Lock Types

Another important set of notations has to do with identifying what classes and
interfaces have instances that are intended to be locks. Such lock objects are
an addition to the implicit reentrant lock in each object that can be acquired
using Java’s synchronized statement. Java 1.5 adds several such types of lock
objects, which support new concurrency patterns. An example is the new class
ReentrantLock, whose instances are specialized locks that are manipulated by
method calls. Such locks can make synchronization more flexible and allow for
more efficient code. In JDK 1.5, users can also define their own locks by imple-
menting the interface java.util.concurrent.locks.Lock.

To deal with these new kinds of locks, JML will consider a type to be lock
type if it is a subtype of the Lock interface. An expression whose static type is
a lock type is considered to denote a lock object. There is a potential semantic
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ambiguity that arises because lock objects also contain Java’s implicit synchro-
nization locks. To resolve this ambiguity we assume that when lock objects are
mentioned in a context where a lock is expected, the specifier always means the
lock object itself, not the implicit synchronization lock it contains. For example,
in a monitors_for clause a lock object expression refers to the lock object itself.

To know when a lock object is locked, we introduce a new type-level decla-
ration, the locked_if clause. Its syntax is as follows.

〈locked-if-clause〉 ::= locked_if 〈predicate〉 ;
Each type that is a subtype of java.util.concurrent.locks.Lock must de-
clare or inherit exactly one locked_if clause. This clause states a predicate that
holds if and only if the given instance of the lock type is in the locked state.

So, for example, for the class ReentrantLock we have:

package java.util.concurrent;

import java.util.concurrent.locks.Lock;

public class ReentrantLock implements Lock, java.io.Serializable {

//@ locked_if isLocked();

/* ... */

}

In ReentrantLock, isLocked is a (pure) method that returns true if the
target instance is locked, and false otherwise. The locked_if clause is used in
the lockset() operator’s semantics. For example, if rl has type ReentrantLock,
then \lockset().has(rl) returns true if and only if rl.isLocked() holds.

4.7 Revisiting External Interference

In Sec. 4.3 we described how the atomic modifier solves the internal interference
problem by providing an abstraction in which other threads did not interleave
during the execution of the method. Now we look at how the rest of the an-
notations help in solving the problem of external interference. As suggested in
Sec. 4.3, the key to preventing this problem is disallowing access from other
threads to the objects mentioned in the pre- and postconditions.

External interference is a problem of interference between two methods: one
method (the caller) calling another method (the callee) and other threads break-
ing the contract between the two of them. To support contract specifications that
account for external interference we consider two cases: an atomic method calling
another atomic method, and a non-atomic method calling an atomic method.
Note that atomic methods can only call atomic methods, and the case where a
non-atomic method calls another non-atomic method, aside from being uncom-
mon, would not be handled by our notations.

In the first case, if an atomic method calls another atomic method, then the
interference between the caller and the callee would be internal interference in
the caller, which is already handled by the atomicity abstraction.

In the second case, when a non-atomic method calls an atomic method, the
caller needs to ensure that the objects needed to preserve the truth of the pre-
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and postcondition are thread safe. We define thread safety by introducing a new
operator, \thread_safe, defined such that

\thread_safe(SR) ≡ \thread_local(SR) || \lock_protected(SR).

That is, SR is thread-safe if it is owned by the current thread or is lock protected.
To avoid external interference, a contract must require that all objects needed
to preserve the truth of the pre- and postcondition are thread-safe. While this
is a strong condition, in our experience it is satisfied by all well-written multi-
threaded code.

As an example of how objects needed to preserve the truth of preconditions
should be thread-safe, consider the precondition of method inc() in Fig. 7. This
precondition requires the argument i to be a valid index of the array items.
Now, the argument i is itself thread-safe, but clients cannot guarantee this pre-
condition unless items is thread safe too. However, since items is monitored by
lock (as stated in the monitors_for clause in Fig. 7), and it is a rep (owned)
object, then items is effectively thread-safe, since there can be no aliases from
outside of the object to items. If items is thread local, then the precondition is
also satisfied, therefore the precondition that lock is held could be safely relaxed
to \thread_safe(items).

5 Evaluation

In this section we describe our experiences applying our JML extensions. We
evaluate their adequacy and efficacy by applying them in a collection of speci-
fication case studies. In these studies, we attempt to write complete behavioral
specifications for a collection of Java classes drawn from the literature that were
designed explicitly for use in multi-threaded programs. These classes use sig-
nificantly more complex concurrency policies than do typical classes, e.g., Java
container classes. Thus, if we can support the specification of rich functional
properties for these classes, then our extensions will be broadly applicable. We
also evaluate the checkability of our JML extensions in a set of verification case
studies. In these studies, we sampled the classes and specifications from our
specification studies and checked them using an extension of the Bogor model
checking framework [26] described below.

The next two sections present the details of these of case studies, give a sum-
mary of the results obtained, and an account of our conclusions. The complete
set of artifacts used in our studies are available from the web [8].

5.1 Specification Case Studies

To assess the adequacy and behavior coverage of the extensions to JML, we
identified a set of of concurrent Java classes and wrote specifications for their
methods using the extended JML. The classes come from multiple sources and
most are implementations of concurrent data structures:
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Class Name Number of Frequency of annotations
methods atomic \independent locks \thread local when

BoundedBuffer 3 3 0 2 0 2
DiningPhilosphers 7 7 4 2 0 1
LinkedQueue 7 7 0 7 0 1
RWVSN 8 8 2 4 0 2
java.util.Vector 45 45 4 34 9 0
ArrayBlockingQueue* 19 19 7 15 3 2
CopyOnWriteArrayList* 27 27 6 13 12 0
CopyOnWriteArraySet* 13 13 2 6 5 0
DelayQueue* 17 17 3 14 4 2
LinkedBlockingQueue* 17 17 4 12 1 2
PriorityBlockingQueue* 21 21 4 10 1 1
ConcurrentLinkedQueue* 11 11 2 0 2 4

Total: 195 195 38 119 37 17

Table 1. Summary of statistics from specification case studies with the extended JML.
The classes marked with a * belong to Java 1.5’s package java.util.concurrent.

– A bounded buffer, BoundedBuffer (from Hartley [27]).
– Dining philosophers, DiningPhilosophers (from Hartley [27]).
– A linked queue, LinkedQueue (from Lea [11]).
– Code for readers-writers, RWVSN (from Lea [11]).

– The class java.util.Vector.
– Eight concurrent classes from java.util.concurrent in Java 1.5.

The 8 classes from java.util.concurrent are particularly important, as they
have fairly complex and varied concurrency patterns and represent the new Java
concurrency paradigm.

Table 1 presents statistics on the specifications we developed. The data shown
is only for the 195 public methods in the studied classes; including private meth-
ods brings the total to over 220. We note that for all methods we were able to
write complete behavioral specifications. So, for this challenging set of concurrent
classes, our extensions appear sufficient for capturing their behavior.

Table 1 also reports the frequency with which we used different groups of
extended JML primitives; these groups were described in the sub-sections of
Sec. 4. Each entry shows the number of methods in the class whose specification
used an annotation in the given group.

We observe that all of the methods studied had specifications that used the
keyword atomic, that is, the methods exhibit the atomicity property. These
results add to existing evidence [23] in support of the conclusion that most Java
methods are intended to execute atomically. This validates our approach to using
atomicity as the central abstraction for extending JML to support concurrency.

The use of \independent is not particularly common in this collection of
classes. We believe that this is due to the fact that methods in these classes gen-
erally have complex concurrency policies. More typical classes with get and set
methods for instance fields would probably yield large numbers of independent
methods, but a broader study of Java classes is needed to confirm this intuition.

The study confirms the popularity of synchronization in enforcing correct
thread-safe class behavior as more than 60% of the methods used the locking
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Class Name Number of Checkable Checkable
Methods Atomicity Functionality Coverage Ratio

BoundedBuffer 3 1 3 .67
DiningPhilosphers 7 6 7 .93
LinkedQueue 7 1 7 .57
RWVSN 8 4 8 .75
CopyOnWriteArrayList* 10 5 10 .75
LinkedBlockingQueue* 7 3 7 .71

Total: 42 20 42 .74

Table 2. Summary of statistics from verification case studies with the extended JML.
Classes marked with a * belong to Java 1.5’s package java.util.concurrent.

extensions. Use of data confinement is much less common in this study with less
than 20% of the methods using \thread local annotations.

We believe that the sparse use of when clause in this study is due to the fact
that most of our classes are container data structures. In most cases, concurrent
data structures have two blocking methods: one that inserts elements but blocks
if the structure is full and another one that removes elements but blocks if the
structure is empty. More varied interfaces for accessing and modifying stored
data will increase the need for this annotation.

The most important result of these studies is the fact that the proposed JML
extensions appear to be both necessary (all annotations are used in the study)
and sufficient (all methods in the study could be specified) for supporting thread-
safe functional specification.

5.2 Verification Case Studies

In previous work [26], we showed how an extensible model checking framework,
called Bogor, could be extended to check complex JML specifications [9], and
how that framework could be independently extended to check atomicity spec-
ifications [10]. We have integrated these two separate extensions to execute si-
multaneously during state-space analysis to check extended JML concurrency
specifications. The main technical novelty of this integration is that postcon-
dition and frame condition checking is enforced only if the current execution
of the method was serial, that is, if the method body was executed without
any interleaving from other threads. So this strategy both checks the functional
specifications and independently assures that all concurrent runs of the method
conform to the atomicity specifications. If either the atomicity specification or
the functional specification are not satisfied, then Bogor reports a specification
violation.

The result of applying this specification checking tool to a subset of the
classes listed in Table 1 are summarized in Table 2. The first column in this table
displays the class name for the particular case study. The second column shows
the total number of methods involved in the case study. For some classes, only
a fraction of the total methods in the class were checked. We selected methods
with diverse functionality instead of checking large numbers of similar methods.
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The rest of the columns in the table present data on the degree to which the
tool was capable of reasoning about specified methods. We divided the specifica-
tion into two parts: the atomicity specification and the functional specification.
The third column in the table shows the number of methods in the class for
which the atomicity specification could be checked, and the next column shows
the number of those for which the functional specification could be checked.
Finally, the last column gives a ratio of specifications checked versus total spec-
ifications written for all methods in a class.

Table 2 shows that the tool could verify all of the functional specifications
for each method in the study. We note that these are strong specifications that
involve quantification over heap elements, checking frame conditions, freshness,
reachability, and calculating the values of memory locations in the pre-state.

Checking of atomicity is not nearly as complete. The tool could verify atom-
icity for only 20 out of the 42 methods. The study included 22 methods that
exhibit a kind of atomicity which Bogor cannot verify. Bogor’s atomicity check-
ing mechanism is based on Lipton’s reduction [18] and transition independence
[10], whereas the 22 uncovered methods in these case studies exhibit a different
type of atomicity. 11 of those 22 methods exhibit commit atomicity as defined by
Flanagan in [25]. In that work, Flanagan described a model checking algorithm
that allows checking commit atomicity specifications. This technique could be
integrated into Bogor, and would yield a coverage ratio of .87.

The other 11 uncheckable methods implement complex concurrency patterns
that our tool could not detect, even if enhanced to detect commit atomicity.
The model checker could be further extended, of course, to include these syn-
chronization patterns and thereby increase checking coverage. But since checking
atomicity is undecidable in general, there will always be some patterns that the
tool could not detect. Fortunately, the complex patterns and challenging concur-
rency classes that we selected for our study are not common in real application
code. Indeed, Flanagan and Freund found that more than 90% of the methods
they analyzed [23] exhibited relatively simple forms of atomicity. Thus we expect
that many real programs specified with extended JML will be amenable to anal-
ysis via model checking. However, a significantly broader evaluation of the use
of JML and its support for analysis will be needed to confirm this conjecture.

6 Related Work

Perhaps the closest related work to ours is the work on extending Spec# to deal
with multi-threaded programs [28]. The specification language part of Spec# [5],
is similar in many ways to JML, although it is integrated into the programming
language (as in Eiffel [6]). Like JML, Spec# also has an extensive tool set, in-
cluding runtime assertion checking and a verification engine. Although Spec# is
very similar to C#, it is a new programming language that extends and modi-
fies C# in several ways. The most interesting of these changes to C# come in
the ways that Spec# deals with alias control and concurrency control. In both
of these areas, Spec# uses new statements (pack and unpack for alias control,
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and acquire and release statements for concurrency control). The treatment
of alias control is much more dynamic than that found in the Universe type
system which JML uses, which may make it more difficult to analyze statically.
For concurrency control, Spec# deals with external interference in a very dras-
tic fashion, by having acquire gain exclusive access to an object, so that it is
thread local. The Spec# discipline solves the internal and external interference
problems, and has a proof of soundness. However, the approach only applies to
programs that can be written following that discipline. The authors list as future
work “extending the approach to deal with other design patterns” [28, Sec. 9].
In contrast, our work attempts to deal with existing concurrent Java programs,
without requiring that they follow a particular programming discipline.

Ábrahám et al. [29] provide a proof system for multi-threaded Java pro-
grams. Their analysis is sound and tool supported. However, as they rely on
whole-program Owicki-Gries style annotations they do not achieve modularity
in the sense we aim for (i.e., at the level of individual compilation units). Fur-
thermore, their proof system only deals with monitor synchronization, whereas
our approach is applicable to all Java, and accepts a very wide range of synchro-
nization patterns by abstracting away from synchronization conditions. Thus
our approach promises to be more useful for existing Java code.

Robby et al. [9] identified the problem of internal interference described
in Sec. 2. They solved it by refactoring the functional code of a method, into
another method, separating it from the synchronization code. In this way they
are able to check JML specifications upon the refactored method that is always
called within an atomic context. However, this technique is both limited in its
applicability and inconvenient for users.

Freund and Qadeer implement a modular analysis for atomic specifications
on multi-threaded software [30]. The idea of using a label to mark the commit
points of a method, similar to the commit label introduced in Sec. 4.5, comes
from their work. They achieve modularity by annotating shared variables with
an access predicate, and by using the concepts of reduction to link a procedure
to its specification. They translate a multi-threaded program into a sequential
program in which atomic procedures are executed sequentially. However, JML
is more expressive than the specification language they used.

Hatcliff et al. [10] developed a technique to verify atomicity annotations us-
ing model checking. Wang and Stoller [31] provide two atomicity detection al-
gorithms based on runtime analysis: one based on Lipton’s reduction [18] and
another based on a sophisticated pattern matching mechanism. However, this
system only provides verification of atomicity specifications. The verification
tool described in Sec. 5 can be viewed as a natural extension to these techniques,
which also checks functional specifications.

7 Conclusions and Future Work

We have extended JML by adding notations that allow the verification of multi-
threaded Java programs. The overall approach is to use the concept of atomicity,
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from Lipton’s reduction theory for parallel programs. We have shown how the
added annotations support the concept of atomicity and allow the specification
of locking behavior. In addition, we have shown how the concept of atomicity
can be used to avoid the problems of internal and external interference, and
thus to support modular reasoning. We have described our success in writing
extended JML specifications of existing Java classes and have reported results
on the implementation of a tool that leverages these language extensions to verify
behavioral specifications of multi-threaded programs.

We are planning on extending and continuing this work along several lines.
On the JML language side, we are planning to work on a formalization of all the
new language constructs presented in this paper, and introduce a formal modular
analysis for behavioral specifications of multi-threaded programs. Some details,
such as how to extend JML’s concept of pure methods to allow for locking [3] also
need to be worked out. Also, we are studying other ways to improve concurrency
support in JML. For example, one way in which JML could be further improved
is the addition of temporal logic specification operators based on specification
patterns [32] as in BSL (Bandera Specification Language) [33].

On the tool support side, the same basic division of labor described in Sec. 5
for model checking, could be used to adapt JML’s runtime assertion checking tool
[34] to our JML extensions. This tool instruments Java programs with additional
instructions that check method pre- and postconditions, invariants, etc. The idea
would be to add checks from the Atomizer tool [23], which checks that program
traces conform to Lipton’s atomicity pattern. By separately checking for atomic
executions, the runtime assertion checker could carry on as before, assuming
that atomic methods were executed sequentially.

We plan to integrate this work into the JMLEclipse framework [35] which is
an Eclipse-based front-end for JML verification engines (in particular, it will be
the front-end for our JML model checking tool). Another possible path for future
work is to extend other JML tools, such as ESC/Java2 or other verification tools
(e.g., [7]) to incorporate the new features.
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