
Title: Specification and Verification I

Lecturer: Mike Gordon

Class: Computer Science Tripos, Part II

Duration: Twelve lectures

Specification and Verification I

Mike Gordon

Overview

These lecture notes are for the course entitled Specification and Verification I. Some

of the material is derived from previously published sources.1

Chapters 1–4 introduces the classical ideas of specification and proof of program

properties due to Floyd and Hoare. Chapter 5 is an introduction to program refine-

ment using an approach due to Paul Curzon. Chapter 6 presents higher order logic

and Chapter 7 explains how Floyd-Hoare logic can be defined within higher order

logic.

The topic of this course is the specification and verification of software. It is a

prerequisite for the Part II course on the specification and verification of hardware

entitled Specification and Verification II.

Learning Guide

These notes contain all the material that will be covered in the course. It should

thus not be necessary to consult any textbooks etc.

The copies of transparencies give the contents of the lectures. However note that

I sometimes end up going faster or slower than expected so, for example, material

shown in Lecture n might actually get covered in Lecture n+1 or Lecture n−1.

The examination questions will be based on material in the lectures. Thus if I

end up not covering some topic in the lectures, then I would not expect to set an

examination question on it.

This course has been fairly stable for several years, so past exam questions are

a reasonable guide to the sort of thing I will set this year (and so are worth doing

for practice).

Acknowledgement

Paul Curzon has made many improvements and corrections to these notes.

1M.J.C. Gordon, Programming Language Theory and its Implementation, Prentice-Hall Inter-
national Series in Computer Science (edited by Professor C.A.R Hoare), 1988 (out of print);
M.J.C. Gordon, Mechanizing Programming Logics in Higher Order Logic, in Current Trends in
Hardware Verification and Automated Theorem Proving, edited by G. Birtwistle and P.A. Sub-
rahmanyam, Springer-Verlag, 1989.

Contents

1 Program Specification 7

1.1 Introduction . 7

1.2 A little programming language . 7

1.2.1 Assignments . 8

1.2.2 Array assignments . 8

1.2.3 Sequences . 9

1.2.4 Blocks . 9

1.2.5 One-armed conditionals . 9

1.2.6 Two-armed conditionals . 9

1.2.7 WHILE-commands . 10

1.2.8 FOR-commands . 10

1.2.9 Summary of syntax . 10

1.3 Hoare’s notation . 11

1.4 Some examples . 12

1.5 Terms and statements . 14

2 Floyd-Hoare Logic 17

2.1 Axioms and rules of Floyd-Hoare logic 18

2.1.1 The assignment axiom . 19

2.1.2 Precondition strengthening 21

2.1.3 Postcondition weakening . 22

2.1.4 Specification conjunction and disjunction 22

2.1.5 The sequencing rule . 23

2.1.6 The derived sequencing rule 24

2.1.7 The block rule . 24

2.1.8 The derived block rule . 25

2.1.9 The conditional rules . 26

2.1.10 The WHILE-rule . 28

2.1.11 The FOR-rule . 29

2.1.12 Arrays . 34

2.2 Soundness and completeness . 37

2.3 Some exercises . 38

3

4 Contents

3 Mechanizing Program Verification 47

3.1 Overview . 47

3.2 Verification conditions . 49

3.3 Annotation . 50

3.4 Verification condition generation . 51

3.5 Justification of verification conditions 58

4 Total Correctness 63

4.1 Axioms and rules for non-looping commands 63

4.2 Derived rule for total correctness of non-looping commands 65

4.3 The termination of assignments . 65

4.4 WHILE-rule for total correctness . 66

4.5 Termination specifications . 67

4.6 Verification conditions for termination 67

4.7 Verification condition generation . 68

5 Program Refinement 75

5.1 Introduction . 75

5.2 Refinement laws . 76

5.3 An example . 79

5.4 General remarks . 80

6 Higher Order Logic 81

6.1 Terms . 83

6.1.1 Variables and constants . 83

6.1.2 Function applications . 83

6.1.3 Lambda-terms . 83

6.2 Types . 84

6.2.1 Type variables and polymorphism 86

6.3 Special Syntactic Forms . 86

6.3.1 Infixes . 87

6.3.2 Binders . 87

6.3.3 Pairs and tuples . 88

6.3.4 Lists . 89

6.3.5 Conditionals . 89

6.3.6 Hilbert’s ε-operator . 89

6.4 Definitions . 91

6.5 Peano’s axioms . 91

6.5.1 Primitive recursion . 92

6.5.2 Arithmetic . 93

6.5.3 Lists . 94

Contents 5

6.6 Semantics . 95

7 Deriving Floyd-Hoare Logic 97

7.1 Semantic embedding . 97

7.2 A simple imperative programming language 98

7.2.1 Axioms and rules of Hoare logic 99

7.3 Semantics in logic . 100

7.3.1 Semantics of commands . 102

7.3.2 Semantics of partial correctness specifications 104

7.4 Floyd-Hoare logic as higher order logic 105

7.4.1 Derivation of the SKIP-axiom 106

7.4.2 Derivation of precondition strengthening 106

7.4.3 Derivation of postcondition weakening 107

7.4.4 Derivation of the sequencing rule 107

7.4.5 Derivation of the IF-rule . 107

7.4.6 Derivation of the WHILE-rule 107

7.4.7 Derivation of the assignment axiom 108

7.5 Termination and total correctness . 109

7.5.1 Derived rules for total correctness 110

7.6 Other programming logic constructs 111

7.6.1 VDM-style specifications . 111

7.6.2 Dijkstra’s weakest preconditions 114

7.6.3 Dynamic logic . 117

Bibliography 119

6 Contents

Chapter 1

Program Specification

A simple programming language containing assignments, conditionals,

blocks, WHILE-commands and FOR-commands is introduced. This lan-

guage is then used to illustrate Hoare’s notation for specifying the par-

tial correctness of programs. Hoare’s notation uses predicate calculus to

express conditions on the values of program variables. A fragment of

predicate calculus is introduced and illustrated with examples.

1.1 Introduction

In order to prove mathematically the correctness of a program one must first specify

what it means for it to be correct. In this chapter a notation for specifying the

desired behaviour of imperative programs is described. This notation is due to

C.A.R. Hoare.

Executing an imperative program has the effect of changing the state, i.e. the

values of program variables1. To use such a program, one first establishes an initial

state by setting the values of some variables to values of interest. One then executes

the program. This transforms the initial state into a final one. One then inspects

(using print commands etc.) the values of variables in the final state to get the

desired results. For example, to compute the result of dividing y into x one might

load x and y into program variables X and Y, respectively. One might then execute

a suitable program (see Example 7 in Section 1.4) to transform the initial state

into a final state in which the variables Q and R hold the quotient and remainder,

respectively.

The programming language used in these notes is described in the next section.

1.2 A little programming language

Programs are built out of commands like assignments, conditionals etc. The terms

‘program’ and ‘command’ are really synonymous; the former will only be used for

commands representing complete algorithms. Here the term ‘statement’ is used

1For languages more complex than those described here, the state may consist of other things
besides the values of variables [16].

7

8 Chapter 1. Program Specification

for conditions on program variables that occur in correctness specifications (see

Section 1.3). There is a potential for confusion here because some writers use this

word for commands (as in ‘for-statement’ [21]).

We now describe the syntax (i.e. form) and semantics (i.e. meaning) of the

various commands in our little programming language. The following conventions

are used:

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of par-

ticular variables are X, R, Q etc.

2. The symbols E, E1, . . . , En stand for arbitrary expressions (or terms). These

are things like X + 1,
√
2 etc. which denote values (usually numbers).

3. The symbols S, S1, . . . , Sn stand for arbitrary statements. These are condi-

tions like X < Y, X2 = 1 etc. which are either true or false.

4. The symbols C, C1, . . . , Cn stand for arbitrary commands of our program-

ming language; these are described in the rest of this section.

Terms and statements are described in more detail in Section 1.5.

1.2.1 Assignments

Syntax: V := E

Semantics: The state is changed by assigning the value of the term E to the

variable V .

Example: X:=X+1

This adds one to the value of the variable X.

1.2.2 Array assignments

Syntax: V (E1):=E2

Semantics: The state is changed by assigning the value of the term E2 to the E1th

component of the array variable V .

Example: A(X+1) := A(X)+2

If the the value of X is n then the value stored in the n+1th component of A

becomes the value of the nth component of A plus 2.

1.2. A little programming language 9

1.2.3 Sequences

Syntax: C1; · · · ;Cn

Semantics: The commands C1, · · · , Cn are executed in that order.

Example: R:=X; X:=Y; Y:=R

The values of X and Y are swapped using R as a temporary variable. This

command has the side effect of changing the value of the variable R to

the old value of the variable X.

1.2.4 Blocks

Syntax: BEGIN VAR V1; · · · VAR Vn; C END

Semantics: The command C is executed, and then the values of V1, · · · , Vn are

restored to the values they had before the block was entered. The initial values of

V1, · · · , Vn inside the block are unspecified.

Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END

The values of X and Y are swapped using R as a temporary variable. This

command does not have a side effect on the variable R.

1.2.5 One-armed conditionals

Syntax: IF S THEN C

Semantics: If the statement S is true in the current state, then C is executed. If

S is false, then nothing is done.

Example: IF ¬(X=0) THEN R:= Y DIV X

If the value X is not zero, then R is assigned the result of dividing the

value of Y by the value of X.

1.2.6 Two-armed conditionals

Syntax: IF S THEN C1 ELSE C2

Semantics: If the statement S is true in the current state, then C1 is executed. If

S is false, then C2 is executed.

Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

The value of the variable MAX it set to the maximum of the values of X

and Y.

10 Chapter 1. Program Specification

1.2.7 WHILE-commands

Syntax: WHILE S DO C

Semantics: If the statement S is true in the current state, then C is executed and

the WHILE-command is then repeated. If S is false, then nothing is done. Thus C

is repeatedly executed until the value of S becomes false. If S never becomes false,

then the execution of the command never terminates.

Example: WHILE ¬(X=0) DO X:= X-2

If the value of X is non-zero, then its value is decreased by 2 and then

the process is repeated. This WHILE-command will terminate (with X

having value 0) if the value of X is an even non-negative number. In all

other states it will not terminate.

1.2.8 FOR-commands

Syntax: FOR V :=E1 UNTIL E2 DO C

Semantics: If the values of terms E1 and E2 are positive numbers e1 and e2

respectively, and if e1 ≤ e2, then C is executed (e2−e1)+1 times with the variable

V taking on the sequence of values e1, e1+1, . . . , e2 in succession. For any other

values, the FOR-command has no effect. A more precise description of this semantics

is given in Section 2.1.11.

Example: FOR N:=1 UNTIL M DO X:=X+N

If the value of the variable M is m and m ≥ 1, then the command X:=X+N

is repeatedly executed with N taking the sequence of values 1, . . . , m.

If m < 1 then the FOR-command does nothing.

1.2.9 Summary of syntax

The syntax of our little language can be summarized with the following specification

in BNF notation2

<command>
::= <variable>:=<term>
| <variable>(<term>):=<term>
| <command>; . . . ;<command>
| BEGIN VAR <variable>; . . . VAR <variable>; <command> END

| IF <statement> THEN <command>
| IF <statement> THEN <command> ELSE <command>
| WHILE <statement> DO <command>
| FOR <variable>:=<term> UNTIL <term> DO <command>

2BNF stands for Backus-Naur form; it is a well-known notation for specifying syntax.

1.3. Hoare’s notation 11

Note that:

• Variables, terms and statements are as described in Section 1.5.

• Only declarations of the form ‘VAR <variable>’ are needed. The types of

variables need not be declared (unlike in Pascal).

• Sequences C1; . . . Cn are valid commands; they are equivalent to

BEGIN C1; . . . Cn END (i.e. blocks without any local variables).

• The BNF syntax is ambiguous: it does not specify, for example, whether IF

S1 THEN IF S2 THEN C1 ELSE C2 means

IF S1 THEN (IF S2 THEN C1 ELSE C2)

or

IF S1 THEN (IF S2 THEN C1) ELSE C2

We will clarify, whenever necessary, using brackets.

1.3 Hoare’s notation

In a seminal paper [20] C.A.R. Hoare introduced the following notation for speci-

fying what a program does3:

{P} C {Q}

where:

• C is a program from the programming language whose programs are being

specified (the language in Section 1.2 in our case).

• P and Q are conditions on the program variables used in C.

Conditions on program variables will be written using standard mathematical

notations together with logical operators like ∧ (‘and’), ∨ (‘or’), ¬ (‘not’) and ⇒
(‘implies’). These are described further in Section 1.5.

We say {P} C {Q} is true, if whenever C is executed in a state satisfying P and

if the execution of C terminates, then the state in which C’s execution terminates

satisfies Q.

Example: {X = 1} X:=X+1 {X = 2}. Here P is the condition that the value of X is

1, Q is the condition that the value of X is 2 and C is the assignment command

X:=X+1 (i.e. ‘X becomes X+1’). {X = 1} X:=X+1 {X = 2} is clearly true. 2

3Actually, Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter form is now
more widely used.

12 Chapter 1. Program Specification

An expression {P} C {Q} is called a partial correctness specification; P is called

its precondition and Q its postcondition.

These specifications are ‘partial’ because for {P} C {Q} to be true it is not

necessary for the execution of C to terminate when started in a state satisfying P .

It is only required that if the execution terminates, then Q holds.

A stronger kind of specification is a total correctness specification. There is no

standard notation for such specifications. We shall use [P] C [Q].

A total correctness specification [P] C [Q] is true if and only if the following

conditions apply:

(i) Whenever C is executed in a state satisfying P , then the execution of C

terminates.

(ii) After termination Q holds.

The relationship between partial and total correctness can be informally expressed

by the equation:

Total correctness = Termination + Partial correctness.

Total correctness is what we are ultimately interested in, but it is usually easier

to prove it by establishing partial correctness and termination separately.

Termination is often straightforward to establish, but there are some well-known

examples where it is not. For example4, no one knows whether the program below

terminates for all values if X:

WHILE X>1 DO

IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

(The expression X DIV 2 evaluates to the result of rounding down X/2 to a whole

number.)

Exercise 1

Write a specification which is true if and only if the program above terminates. 2

1.4 Some examples

The examples below illustrate various aspects of partial correctness specification.

In Examples 5, 6 and 7 below, T (for ‘true’) is the condition that is always

true. In Examples 3, 4 and 7, ∧ is the logical operator ‘and’, i.e. if P 1 and P 2 are

conditions, then P 1 ∧ P 2 is the condition that is true whenever both P 1 and P 2

hold.

1. {X = 1} Y:=X {Y = 1}
4This example is taken from Exercise 2 on page 17 of Reynolds’s book [38].

1.4. Some examples 13

This says that if the command Y:=X is executed in a state satisfying the condition

X = 1 (i.e. a state in which the value of X is 1), then, if the execution terminates

(which it does), then the condition Y = 1 will hold. Clearly this specification is

true.

2. {X = 1} Y:=X {Y = 2}

This says that if the execution of Y:=X terminates when started in a state satisfying

X = 1, then Y = 2 will hold. This is clearly false.

3. {X=x ∧ Y=y} BEGIN R:=X; X:=Y; Y:=R END {X=y ∧ Y=x}

This says that if the execution of BEGIN R:=X; X:=Y; Y:=R END terminates (which

it does), then the values of X and Y are exchanged. The variables x and y, which

don’t occur in the command and are used to name the initial values of program

variables X and Y, are called auxiliary variables (or ghost variables).

4. {X=x ∧ Y=y} BEGIN X:=Y; Y:=X END {X=y ∧ Y=x}

This says that BEGIN X:=Y; Y:=X END exchanges the values of X and Y. This is not

true.

5. {T} C {Q}

This says that whenever C halts, Q holds.

6. {P} C {T}

This specification is true for every condition P and every command C (because T

is always true).

7. {T}
BEGIN

R:=X;

Q:=0;

WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

END

C

{R < Y ∧ X = R + (Y× Q)}

This is {T} C {R < Y ∧ X = R + (Y× Q)} where C is the command indicated by the

braces above. The specification is true if whenever the execution of C halts, then Q

is quotient and R is the remainder resulting from dividing Y into X. It is true (even

if X is initially negative!).

In this example a program variable Q is used. This should not be confused

with the Q used in 5 above. The program variable Q (notice the font) ranges over

numbers, whereas the postcondition Q (notice the font) ranges over statements. In

general, we use typewriter font for particular program variables and italic font for

variables ranging over statements. Although this subtle use of fonts might appear

confusing at first, once you get the hang of things the difference between the two

14 Chapter 1. Program Specification

kinds of ‘Q’ will be clear (indeed you should be able to disambiguate things from

context without even having to look at the font).

Exercise 2

Let C be as in Example 7 above. Find a condition P such that:

[P] C [R < Y ∧ X = R + (Y× Q)]

is true. 2

Exercise 3

When is [T] C [T] true? 2

Exercise 4

Write a partial correctness specification which is true if and only if the command

C has the effect of multiplying the values of X and Y and storing the result in X. 2

Exercise 5

Write a specification which is true if the execution of C always halts when execution

is started in a state satisfying P . 2

1.5 Terms and statements

The notation used here for expressing pre- and postconditions is based on first-order

logic. This will only be briefly reviewed here as readers are assumed to be familiar

with it. 5

The following are examples of atomic statements.

T, F, X = 1, R < Y, X = R+(Y×Q)

Statements are either true or false. The statement T is always true and the statement

F is always false. The statement X = 1 is true if the value of X is equal to 1. The

statement R < Y is true if the value of R is less than the value of Y. The statement

X = R+(Y×Q) is true if the value of X is equal to the sum of the value of R with the

product of Y and Q.

Statements are built out of terms like:

X, 1, R, Y, R+(Y×Q), Y×Q

Terms denote values such as numbers and strings, unlike statements which are either

true or false. Some terms, like 1 and 4+ 5, denote a fixed value, whilst other terms

contain variables like X, Y, Z etc. whose value can vary. We will use conventional

mathematical notation for terms, as illustrated by the examples below:

5See the IB course Logic and Proof .

1.5. Terms and statements 15

X, Y, Z,

1, 2, 325,

-X, -(X+1), (X×Y)+Z,

√
(1+X2), X!, sin(X), rem(X,Y)

T and F are atomic statements that are always true and false respectively. Other

atomic statements are built from terms using predicates. Here are some more ex-

amples:

ODD(X), PRIME(3), X = 1, (X+1)2 ≥ X2

ODD and PRIME are examples of predicates and = and ≥ are examples of infixed

predicates. The expressions X, 1, 3, X+1, (X+1)2, X2 are examples of terms.

Compound statements are built up from atomic statements using the following

logical operators:

¬ (not)
∧ (and)
∨ (or)
⇒ (implies)
⇔ (if and only if)

The single arrow → is commonly used for implication instead of ⇒. We use ⇒ to

avoid possible confusion with the the use of → for λ-conversion in Part II.

Suppose P and Q are statements, then:

• ¬P is true if P is false, and false if P is true.

• P ∧Q is true whenever both P and Q are true.

• P ∨Q is true if either P or Q (or both) are true.

• P ⇒ Q is true if whenever P is true, then Q is true also. By convention we

regard P ⇒ Q as being true if P is false. In fact, it is common to

regard P ⇒ Q as equivalent to ¬P ∨Q; however, some philosophers

called intuitionists disagree with this treatment of implication.

• P ⇔ Q is true if P and Q are either both true or both false. In fact P ⇔ Q

is equivalent to (P ⇒ Q) ∧ (Q⇒ P).

Examples of statements built using the connectives are:

ODD(X) ∨ EVEN(X) X is odd or even.

¬(PRIME(X)⇒ ODD(X)) It is not the case that if X is prime,
then X is odd.

X ≤ Y⇒ X ≤ Y2 If X is less than or equal to Y, then
X is less than or equal to Y2.

16 Chapter 1. Program Specification

To reduce the need for brackets it is assumed that ¬ is more binding than ∧ and

∨, which in turn are more binding than ⇒ and ⇔. For example:

¬P ∧Q is equivalent to (¬P) ∧Q
P ∧Q⇒ R is equivalent to (P ∧Q)⇒ R
P ∧Q⇔ ¬R ∨ S is equivalent to (P ∧Q)⇔ ((¬R) ∨ S)

Chapter 2

Floyd-Hoare Logic

The idea of formal proof is discussed. Floyd-Hoare logic is then intro-

duced as a method for reasoning formally about programs.

In the last chapter three kinds of expressions that could be true or false were intro-

duced:

(i) Partial correctness specifications {P} C {Q}.

(ii) Total correctness specifications [P] C [Q].

(iii) Statements of mathematics (e.g. (X + 1)2 = X2 + 2× X + 1).

It is assumed that the reader knows how to prove simple mathematical statements

like the one in (iii) above. Here, for example, is a proof of this fact.

1. (X + 1)2 = (X + 1)× (X + 1) Definition of ()2.
2. (X + 1)× (X + 1) = (X + 1)× X + (X + 1)× 1 Left distributive law

of × over +.
3. (X + 1)2 = (X + 1)× X + (X + 1)× 1 Substituting line 2

into line 1.
4. (X + 1)× 1 = X + 1 Identity law for 1.
5. (X + 1)× X = X× X + 1× X Right distributive law

of × over +.
6. (X + 1)2 = X× X + 1× X + X + 1 Substituting lines 4

and 5 into line 3.
7. 1× X = X Identity law for 1.
8. (X + 1)2 = X× X + X + X + 1 Substituting line 7

into line 6.
9. X× X = X2 Definition of ()2.
10. X + X = 2× X 2=1+1, distributive law.
11. (X + 1)2 = X2 + 2× X + 1 Substituting lines 9

and 10 into line 8.

This proof consists of a sequence of lines, each of which is an instance of an

axiom (like the definition of ()2) or follows from previous lines by a rule of inference

(like the substitution of equals for equals). The statement occurring on the last line

of a proof is the statement proved by it (thus (X+ 1)2 = X2 + 2× X+ 1 is proved by

the proof above).

To construct formal proofs of partial correctness specifications axioms and rules

of inference are needed. This is what Floyd-Hoare logic provides. The formulation

of the deductive system is due to Hoare [20], but some of the underlying ideas

originated with Floyd [11].

17

18 Chapter 2. Floyd-Hoare Logic

A proof in Floyd-Hoare logic is a sequence of lines, each of which is either an

axiom of the logic or follows from earlier lines by a rule of inference of the logic.

The reason for constructing formal proofs is to try to ensure that only sound

methods of deduction are used. With sound axioms and rules of inference, one can

be confident that the conclusions are true. On the other hand, if any axioms or

rules of inference are unsound then it may be possible to deduce false conclusions;

for example1

1.
√
−1×−1 =

√
−1×−1 Reflexivity of =.

2.
√
−1×−1 = (

√
−1)× (

√
−1) Distributive law of

√
over ×.

3.
√
−1×−1 = (

√
−1)2 Definition of ()2.

4.
√
−1×−1 = −1 definition of

√
.

5.
√

1 = −1 As −1×−1 = 1.

6. 1 = −1 As
√

1 = 1.

A formal proof makes explicit what axioms and rules of inference are used to

arrive at a conclusion. It is quite easy to come up with plausible rules for reasoning

about programs that are actually unsound (some examples for FOR-commands can

be found in Section 2.1.11). Proofs of correctness of computer programs are often

very intricate and formal methods are needed to ensure that they are valid. It is

thus important to make fully explicit the reasoning principles being used, so that

their soundness can be analysed.

Exercise 6

Find the flaw in the ‘proof’ of 1 = −1 above. 2

For some applications, correctness is especially important. Examples include

life-critical systems such as nuclear reactor controllers, car braking systems, fly-by-

wire aircraft and software controlled medical equipment. At the time of writing,

there is a legal action in progress resulting from the death of several people due to

radiation overdoses by a cancer treatment machine that had a software bug [25].

Formal proof of correctness provides a way of establishing the absence of bugs when

exhaustive testing is impossible (as it almost always is).

The Floyd-Hoare deductive system for reasoning about programs will be ex-

plained and illustrated, but the mathematical analysis of the soundness and com-

pleteness of the system is only briefly discussed (see Section 2.2).

2.1 Axioms and rules of Floyd-Hoare logic

As discussed at the beginning of this chapter, a formal proof of a statement is a

sequence of lines ending with the statement and such that each line is either an

instance of an axiom or follows from previous lines by a rule of inference. If S is a

statement (of either ordinary mathematics or Floyd-Hoare logic) then we write ` S
to mean that S has a proof. The statements that have proofs are called theorems.

1This example was shown to me by Sylva Cohn.

2.1. Axioms and rules of Floyd-Hoare logic 19

As discussed earlier, in these notes only the axioms and rules of inference for Floyd-

Hoare logic are described; we will thus simply assert ` S if S is a theorem of

mathematics without giving any formal justification. Of course, to achieve complete

rigour such assertions must be proved, but for details of how to do this the reader

will have to consult the later chapters on first order and higher order logic.

The axioms of Floyd-Hoare logic are specified below by schemas which can be

instantiated to get particular partial correctness specifications. The inference rules

of Floyd-Hoare logic will be specified with a notation of the form:

` S1, . . . , ` Sn
` S

This means the conclusion ` S may be deduced from the hypotheses ` S1,

. . . , ` Sn. The hypotheses can either all be theorems of Floyd-Hoare logic (as

in the sequencing rule below), or a mixture of theorems of Floyd-Hoare logic and

theorems of mathematics (as in the rule of preconditioning strengthening described

in Section 2.1.2).

2.1.1 The assignment axiom

The assignment axiom represents the fact that the value of a variable V after exe-

cuting an assignment command V :=E equals the value of the expression E in the

state before executing it. To formalize this, observe that if a statement P is to be

true after the assignment, then the statement obtained by substituting E for V in

P must be true before executing it.

In order to say this formally, define P[E/V] to mean the result of replacing all

occurrences of V in P by E. Read P[E/V] as ‘P with E for V ’. For example,

(X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)

The way to remember this notation is to remember the ‘cancellation law’

V [E/V] = E

which is analogous to the cancellation property of fractions

v × (e/v) = e

The assignment axiom

` {P[E/V]} V :=E {P}

Where V is any variable, E is any expression, P is any statement and the nota-
tion P[E/V] denotes the result of substituting the term E for all occurrences
of the variable V in the statement P .

20 Chapter 2. Floyd-Hoare Logic

Instances of the assignment axiom are:

1. ` {Y = 2} X := 2 {Y = X}

2. ` {X + 1 = n + 1} X := X + 1 {X = n + 1}

3. ` {E = E} X := E {X = E} (if X does not occur in E).

Many people feel the assignment axiom is ‘backwards’ from what they would

expect. Two common erroneous intuitions are that it should be as follows:

(i) ` {P} V :=E {P[V/E]}.

Where the notation P[V/E] denotes the result of substituting V for E in P .

This has the clearly false consequence that ` {X=0} X:=1 {X=0}, since the

(X=0)[X/1] is equal to (X=0) as 1 doesn’t occur in (X=0).

(ii) ` {P} V :=E {P[E/V]}.

This has the clearly false consequence ` {X=0} X:=1 {1=0} which follows by

taking P to be X=0, V to be X and E to be 1.

The fact that it is easy to have wrong intuitions about the assignment axiom

shows that it is important to have rigorous means of establishing the validity of

axioms and rules. We will not go into this topic here aside from remarking that

it is possible to give a formal semantics of our little programming language and

then to prove that the axioms and rules of inference of Floyd-Hoare logic are sound.

Of course, this process will only increase our confidence in the axioms and rules

to the extent that we believe the correctness of the formal semantics. The simple

assignment axiom above is not valid for ‘real’ programming languages. For example,

work by G. Ligler [27] shows that it can fail to hold in six different ways for the

language Algol 60.

One way that our little programming language differs from real languages is that

the evaluation of expressions on the right of assignment commands cannot ‘side

effect’ the state. The validity of the assignment axiom depends on this property.

To see this, suppose that our language were extended so that it contained the ‘block

expression’

BEGIN Y:=1; 2 END

This expression, E say, has value 2, but its evaluation also ‘side effects’ the variable

Y by storing 1 in it. If the assignment axiom applied to expressions like E, then it

could be used to deduce:

` {Y=0} X:=BEGIN Y:=1; 2 END {Y=0}

(since (Y=0)[E/X] = (Y=0) as X does not occur in (Y=0)). This is clearly false, as

after the assignment Y will have the value 1.

2.1. Axioms and rules of Floyd-Hoare logic 21

Floyd-Hoare logic can be extended to cope with arrays so that, for example,

the correctness of inplace sorting programs can be verified. However, it is not as

straightforward as one might expect to do this. The main problem is that the

assignment axiom does not apply to array assignments of the form A(E1):=E2

(where A is an array variable and E1 and E2 are expressions).

One might think that the assignment axiom in could be generalized to

` {P[E2/A(E1)]} A(E1) := E2 {P}

where ‘P[E2/A(E1)]’ denotes the result of substituting E2 for all occurrences of

A(E1) throughout P . Alas, this does not work. Consider the following case:

P ≡ ‘A(Y)=0’, E1 ≡ ‘X’, E2 ≡ ‘1’

Since A(X) does not occur in P , it follows that P[1/A(X)] = P , and hence the

generalized axiom yields

` {A(Y)=0} A(X):=1 {A(Y)=0}

This specification is clearly false if X=Y. To avoid this, the array assignment axiom

must take into account the possibility that changes to A(X) may also change A(Y),

A(Z), . . . (since X might equal Y, Z, . . .). This is discussed further in Section 2.1.12.

2.1.2 Precondition strengthening

The next rule of Floyd-Hoare logic enables the preconditions of (i) and (ii) on page

20 to be simplified. Recall that

` S1, . . . , ` Sn
` S

means that ` S can be deduced from ` S1, . . . , ` Sn.

Using this notation, the rule of precondition strengthening is

Precondition strengthening

` P ⇒ P ′, ` {P ′} C {Q}
` {P} C {Q}

Examples

1. From the arithmetic fact ` X=n ⇒ X+1=n+1, and 2 on page 20 it follows by

precondition strengthening that

` {X = n} X := X + 1 {X = n + 1}.

The variable n is an example of an auxiliary (or ghost) variable. As described earlier

(see page 13), auxiliary variables are variables occurring in a partial correctness

22 Chapter 2. Floyd-Hoare Logic

specification {P} C {Q} which do not occur in the command C. Such variables

are used to relate values in the state before and after C is executed. For example,

the specification above says that if the value of X is n, then after executing the

assignment X:=X+1 its value will be n+1.

2. From the logical truth ` T ⇒ (E=E), and 3 on page 20 one can deduce that

if X is not in E then:

` {T} X :=E {X =E}

2

2.1.3 Postcondition weakening

Just as the previous rule allows the precondition of a partial correctness specification

to be strengthened, the following one allows us to weaken the postcondition.

Postcondition weakening

` {P} C {Q′}, ` Q′ ⇒ Q

` {P} C {Q}

Example: Here is a little formal proof.

1. ` {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.
2. ` R=X ⇒ R=X ∧ 0=0 By pure logic.
3. ` {R=X} Q=0 {R=X ∧ Q=0} By precondition strengthening.
4. ` R=X ∧ Q=0 ⇒ R=X+(Y× Q) By laws of arithmetic.
5. ` {R=X} Q:=0 {R=X+(Y× Q)} By postcondition weakening.

2

The rules precondition strengthening and postcondition weakening are some-

times called the rules of consequence.

2.1.4 Specification conjunction and disjunction

The following two rules provide a method of combining different specifications about

the same command.

2.1. Axioms and rules of Floyd-Hoare logic 23

Specification conjunction

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∨ P2} C {Q1 ∨Q2}

These rules are useful for splitting a proof into independent bits. For example,

they enable ` {P} C {Q1 ∧ Q2} to be proved by proving separately that both

` {P} C {Q1} and ` {P} C {Q2}.
The rest of the rules allow the deduction of properties of compound commands

from properties of their components.

2.1.5 The sequencing rule

The next rule enables a partial correctness specification for a sequence C1;C2 to be

derived from specifications for C1 and C2.

The sequencing rule

` {P} C1 {Q}, ` {Q} C2 {R}
` {P} C1;C2 {R}

Example: By the assignment axiom:

(i) ` {X=x∧Y=y} R:=X {R=x∧Y=y}

(ii) ` {R=x∧Y=y} X:=Y {R=x∧X=y}

(iii) ` {R=x∧X=y} Y:=R {Y=x∧X=y}

Hence by (i), (ii) and the sequencing rule

(iv) ` {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Hence by (iv) and (iii) and the sequencing rule

(v) ` {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}

2

24 Chapter 2. Floyd-Hoare Logic

2.1.6 The derived sequencing rule

The following rule is derivable from the sequencing and consequence rules.

The derived sequencing rule

` P ⇒ P1

` {P1} C1 {Q1} ` Q1 ⇒ P2

` {P2} C2 {Q2} ` Q2 ⇒ P3

. .

. .

. .
` {Pn} Cn {Qn} ` Qn ⇒ Q

` {P} C1; . . . ; Cn {Q}

The derived sequencing rule enables (v) in the previous example to be deduced

directly from (i), (ii) and (iii) in one step.

2.1.7 The block rule

The block rule is like the sequencing rule, but it also takes care of local variables.

The block rule

` {P} C {Q}
` {P} BEGIN VAR V1; . . . ; VAR Vn; C END {Q}

where none of the variables V1, . . . , Vn occur in P or Q.

The syntactic condition that none of the variables V1, . . . , Vn occur in P or Q is

an example of a side condition. It is a syntactic condition that must hold whenever

the rule is used. Without this condition the rule is invalid; this is illustrated in the

example below.

Note that the block rule is regarded as including the case when there are no

local variables (the ‘n = 0’ case).

Example: From ` {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y} (see page

23) it follows by the block rule that

` {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {Y=x ∧ X=y}

since R does not occur in X=x ∧ Y=y or X=y ∧ Y=x. Notice that from

` {X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}

one cannot deduce

2.1. Axioms and rules of Floyd-Hoare logic 25

` {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y END {R=x ∧ X=y}

since R occurs in {R=x ∧ X=y}. This is as required, because assignments to local

variables of blocks should not be felt outside the block body. Notice, however, that

it is possible to deduce:

` {X=x ∧ Y=y} BEGIN R:=X; X:=Y END {R=x ∧ X=y}.

This is correct because R is no longer a local variable. 2

The following exercise addresses the question of whether one can show that

changes to local variables inside a block are invisible outside it.

Exercise 7

Consider the specification

{X=x} BEGIN VAR X; X:=1 END {X=x}

Can this be deduced from the rules given so far?

(i) If so, give a proof of it.

(ii) If not, explain why not and suggest additional rules and/or axioms to enable

it to be deduced.

2

2.1.8 The derived block rule

From the derived sequencing rule and the block rule the following rule for blocks

can be derived.

The derived block rule

` P ⇒ P1

` {P1} C1 {Q1} ` Q1 ⇒ P2

` {P2} C2 {Q2} ` Q2 ⇒ P3

. .

. .

. .
` {Pn} Cn {Qn} ` Qn ⇒ Q

` {P} BEGIN VAR V1; . . . VAR Vn;C1; . . . ; Cn {Q}

where none of the variables V1, . . . , Vn occur in P or Q.

Using this rule, it can be deduced in one step from (i), (ii) and (iii) on page 23

that:

` {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {Y=x ∧ X=y}

26 Chapter 2. Floyd-Hoare Logic

Exercise 8

Is the following specification true?

` {X=x ∧ Y=y} X:=X+Y; Y:=X-Y; X:=X-Y {Y=x ∧ X=y}
If so, prove it. If not, give the circumstances in which it fails. 2

Exercise 9

Show ` {X=R+(Y×Q)} BEGIN R:=R-Y; Q:=Q+1 END {X=R+(Y×Q)}
2

2.1.9 The conditional rules

There are two kinds of conditional commands: one-armed conditionals and two-

armed conditionals. There are thus two rules for conditionals.

The conditional rules

` {P ∧ S} C {Q}, ` P ∧ ¬S ⇒ Q

` {P} IF S THEN C {Q}

` {P ∧ S} C1 {Q}, ` {P ∧ ¬S} C2 {Q}
` {P} IF S THEN C1 ELSE C2 {Q}

Example: Suppose we are given that

(i) ` X≥Y ⇒ max(X,Y)=X

(ii) ` Y≥X ⇒ max(X,Y)=Y

Then by the conditional rules (and others) it follows that

` {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

2

Exercise 10

Give a detailed formal proof that the specification in the previous example follows

from hypotheses (i) and (ii). 2

Exercise 11

Devise an axiom and/or rule of inference for a command SKIP that has no effect.

Show that if IF S THEN C is regarded as an abbreviation for IF S THEN C ELSE

SKIP, then the rule for one-armed conditionals is derivable from the rule for two-

armed conditionals and your axiom/rule for SKIP. 2

2.1. Axioms and rules of Floyd-Hoare logic 27

Exercise 12

Suppose we add to our little programming language commands of the form:

CASE E OF BEGIN C1; . . . ; Cn END

These are evaluated as follows:

(i) First E is evaluated to get a value x.

(ii) If x is not a number between 1 and n, then the CASE-command has no effect.

(iii) If x = i where 1 ≤ i ≤ n, then command Ci is executed.

Why is the following rule for CASE-commands wrong?

` {P ∧ E = 1} C1 {Q}, . . . , ` {P ∧ E = n} Cn {Q}
` {P} CASE E OF BEGIN C1; . . . ; Cn END {Q}

Hint: Consider the case when P is ‘X = 0’, E is ‘X’, C1 is ‘Y :=0’ and Q is ‘Y = 0’.

2

Exercise 13

Devise a proof rule for the CASE-commands in the previous exercise and use it to

show:

` {1≤X∧X≤3}
CASE X OF

BEGIN

Y:=X-1;

Y:=X-2;

Y:=X-3

END

{Y=0}

2

Exercise 14

Show that if ` {P∧S} C1 {Q} and ` {P∧¬S} C2 {Q}, then it is possible to de-

duce:

` {P} IF S THEN C1 ELSE IF ¬S THEN C2 {Q}.

2

28 Chapter 2. Floyd-Hoare Logic

2.1.10 The WHILE-rule

If ` {P ∧ S} C {P}, we say: P is an invariant of C whenever S holds. The

WHILE-rule says that if P is an invariant of the body of a WHILE-command whenever

the test condition holds, then P is an invariant of the whole WHILE-command. In

other words, if executing C once preserves the truth of P , then executing C any

number of times also preserves the truth of P .

The WHILE-rule also expresses the fact that after a WHILE-command has termi-

nated, the test must be false (otherwise, it wouldn’t have terminated).

The WHILE-rule

` {P ∧ S} C {P}
` {P} WHILE S DO C {P ∧ ¬S}

Example: By Exercise 9 on page 26

` {X=R+(Y×Q)} BEGIN R:=R-Y; Q:=Q+1 END {X=R+(Y×Q)}

Hence by precondition strengthening

` {X=R+(Y×Q)∧Y≤R} BEGIN R:=R-Y; Q:=Q+1 END {X=R+(Y×Q)}

Hence by the WHILE-rule (with P = ‘X=R+(Y×Q)’)

(i) ` {X=R+(Y×Q)}
WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

{X=R+(Y×Q)∧¬(Y≤R)}

It is easy to deduce that

(ii) ` {T} R:=X; Q:=0 {X=R+(Y×Q)}

Hence by (i) and (ii), the sequencing rule and postcondition weakening

` {T}
R:=X;

Q:=0;

WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

{R<Y∧X=R+(Y×Q)}
2

With the exception of the WHILE-rule, all the axioms and rules described so far

are sound for total correctness as well as partial correctness. This is because the only

commands in our little language that might not terminate are WHILE-commands.

Consider now the following proof:

2.1. Axioms and rules of Floyd-Hoare logic 29

1. ` {T} X:=0 {T} (assignment axiom)
2. ` {T ∧ T} X:=0 {T} (precondition strengthening)
3. ` {T} WHILE T DO X:=0 {T ∧ ¬T} (2 and the WHILE-rule)

If the WHILE-rule were true for total correctness, then the proof above would

show that:

` [T] WHILE T DO X:=0 [T ∧ ¬T]

but this is clearly false since WHILE T DO X:=0 does not terminate, and even if it

did then T ∧ ¬T could not hold in the resulting state.

Extending Floyd-Hoare logic to deal with termination is quite tricky. One ap-

proach can be found in Dijkstra [10].

2.1.11 The FOR-rule

It is quite hard to capture accurately the intended semantics of FOR-commands in

Floyd-Hoare logic. Axioms and rules are given here that appear to be sound, but

they are not necessarily complete (see Section 2.2). An early reference on the logic

of FOR-commands is Hoare’s 1972 paper [21]; a comprehensive treatment can be

found in Reynolds [38].

The intention here in presenting the FOR-rule is to show that Floyd-Hoare logic

can get very tricky. All the other axioms and rules were quite straightforward and

may have given a false sense of simplicity: it is very difficult to give adequate rules

for anything other than very simple programming constructs. This is an important

incentive for using simple languages.

One problem with FOR-commands is that there are many subtly different ver-

sions of them. Thus before describing the FOR-rule, the intended semantics of FOR-

commands must be described carefully. In these notes, the semantics of

FOR V :=E1 UNTIL E2 DO C

is as follows:

(i) The expressions E1 and E2 are evaluated once to get values e1 and e2, respec-

tively.

(ii) If either e1 or e2 is not a number, or if e1 > e2, then nothing is done.

(iii) If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ;
V :=e1; C; V :=e1+1; C ; . . . ; V :=e2; C

END

i.e. C is executed (e2−e1)+1 times with V taking on the sequence of values

e1, e1+1, . . . , e2 in succession. Note that this description is not rigorous:

‘e1’ and ‘e2’ have been used both as numbers and as expressions of our little

language; the semantics of FOR-commands should be clear despite this.

30 Chapter 2. Floyd-Hoare Logic

FOR-rules in different languages can differ in subtle ways from the one here. For

example, the expressions E1 and E2 could be evaluated at each iteration and the

controlled variable V could be treated as global rather than local. Note that with

the semantics presented here, FOR-commands cannot go into infinite loops (unless,

of course, they contain non-terminating WHILE-commands).

To see how the FOR-rule works, suppose that

` {P} C {P[V+1/V]}

Suppose also that C does not contain any assignments to the variable V . If this is

the case, then it is intuitively clear (and can be rigorously proved) that

` {(V = v)} C {(V = v)}

hence by specification conjunction

` {P ∧ (V = v)} C {P[V+1/V] ∧ (V = v)}

Now consider a sequence V :=v; C. By Example 2 on page 22,

` {P[v/V]} V :=v {P ∧ (V = v)}

Hence by the sequencing rule

` {P[v/V]} V :=v; C {P[V+1/V] ∧ (V = v)}

Now it is a truth of logic alone that

` P[V+1/V] ∧ (V = v) ⇒ P[v+1/V]

hence by postcondition weakening

` {P[v/V]} V :=v; C {P[v+1/V]}

Taking v to be e1, e1+1, . . . , e2 and using the derived sequencing rule we can thus

deduce

{P[e1/V]} V :=e1; C; V :=e1+1; . . . ; V :=e2; C {P[e2/V]}

This suggests that a FOR-rule could be:

` {P} C {P[V +1/V]}
` {P[E1/V]} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

Unfortunately, this rule is unsound. To see this, first note that:

1. ` {Y+1=Y+1} X:=Y+1 {X=Y+1} (assignment axiom)
2. ` {T} X:=Y+1 {X= Y+1} (1 and precondition strengthening)
3. ` X=Y ⇒ T (logic: ‘anything implies true’)
4. ` {X=Y} X:=Y+1 {X=Y+1} (2 and precondition strengthening)

2.1. Axioms and rules of Floyd-Hoare logic 31

Thus if P is ‘X=Y’ then:

` {P} X:=Y+1 {P[Y+1/Y]}

and so by the FOR-rule above, if we take V to be Y, E1 to be 3 and E2 to be 1, then

` { X=3︸︷︷︸
P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2︸︷︷︸
P[1+1/Y]

}

This is clearly false: it was specified that if the value of E1 were greater than the

value of E2 then the FOR-command should have no effect, but in this example it

changes the value of X from 3 to 2.

To solve this problem, the FOR-rule can be modified to

` {P} C {P[V +1/V]}
` {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

If this rule is used on the example above all that can be deduced is

` {X=3 ∧ 3 ≤ 1︸ ︷︷ ︸
never true!

} FOR Y:=3 UNTIL 1 DO X:=Y+1 {X=2}

This conclusion is harmless since it only asserts that X will be changed if the FOR-

command is executed in an impossible starting state.

Unfortunately, there is still a bug in our FOR-rule. Suppose we take P to be

‘Y=1’, then it is straightforward to show that:

` {Y=1︸︷︷︸
P

} Y:=Y-1 { Y+1=1︸ ︷︷ ︸
P[Y+1/Y]

}

so by our latest FOR-rule

` { 1=1︸︷︷︸
P[1/Y]

∧ 1 ≤ 1} FOR Y:=1 UNTIL 1 DO Y:=Y-1 { 2=1︸︷︷︸
P[1+1/Y]

}

Whatever the command does, it doesn’t lead to a state in which 2=1. The problem

is that the body of the FOR-command modifies the controlled variable. It is not

surprising that this causes problems, since it was explicitly assumed that the body

didn’t modify the controlled variable when we motivated the FOR-rule. It turns out

that problems also arise if any variables in the expressions E1 and E2 (which specify

the upper and lower bounds) are modified. For example, taking P to be Z=Y, then

it is straightforward to show

` {Z=Y︸︷︷︸
P

} Z:=Z+1 { Z=Y+1︸ ︷︷ ︸
P[Y+1/Y]

}

hence the rule allows us the following to be derived:

` { Z=1︸︷︷︸
P[1/Y]

∧ 1 ≤ Z} FOR Y:=1 UNTIL Z DO Z:=Z+1 { Z=Z+1︸ ︷︷ ︸
P[Z+1/Y]

}

32 Chapter 2. Floyd-Hoare Logic

This is clearly wrong as one can never have Z=Z+1 (subtracting Z from both sides

would give 0=1). One might think that this is not a problem because the FOR-

command would never terminate. In some languages this might be the case, but the

semantics of our language were carefully defined in such a way that FOR-commands

always terminate (see the beginning of this section).

To rule out the problems that arise when the controlled variable or variables in

the bounds expressions, are changed by the body, we simply impose a side condition

on the rule that stipulates that the rule cannot be used in these situations. The

final rule is thus:

The FOR-rule

` {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}
` {P[E1/V]∧(E1≤E2)} FOR V := E1 UNTIL E2 DO C {P[E2+1/V]}

where neither V , nor any variable occurring in E1 or E2, is assigned to in the
command C.

This rule does not enable anything to be deduced about FOR-commands whose

body assigns to variables in the bounds expressions. This precludes such assign-

ments being used if commands are to be reasoned about. The strategy of only

defining rules of inference for non-tricky uses of constructs helps ensure that pro-

grams are written in a perspicuous manner. It is possible to devise a rule that

does cope with assignments to variables in bounds expressions, but it is not clear

whether it is a good idea to have such a rule.

The FOR-axiom

To cover the case when E2 < E1, we need the FOR-axiom below.

The FOR-axiom

` {P ∧ (E2 < E1)} FOR V := E1 UNTIL E2 DO C {P}

This says that when E2 is less than E1 the FOR-command has no effect.

Example: By the assignment axiom and precondition strengthening

` {X = ((N-1)×N) DIV 2} X:=X+N {X=(N×(N+1)) DIV 2}

Strengthening the precondition of this again yields

` {(X=((N-1×N) DIV 2)∧(1≤N)∧(N≤M)} X:=X+N {X=(N×(N+1)) DIV 2}

2.1. Axioms and rules of Floyd-Hoare logic 33

Hence by the FOR-rule

` {(X=((1-1)×1) DIV 2)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X=(M×(M+1)) DIV 2}
Hence

` {(X=0)∧(1≤M)} FOR N:=1 UNTIL M DO X:=X+N {X=(M×(M+1)) DIV 2}
2

Note that if

(i) ` {P} C {P[V +1/V]}, or

(ii) ` {P ∧ (E1 ≤ V)} C {P[V +1/V]}, or

(iii) ` {P ∧ (V ≤ E2)} C {P[V +1/V]}

then by precondition strengthening one can infer

` {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}

Exercise 15

Show that

` {M≥1}
BEGIN

X:=0;

FOR N:=1 UNTIL M DO X:=X+N

END

{X=(M×(M+1)) DIV 2}

2

Exercise 16

Justify the following alternative FOR-rule suggested by Bob Tennent:

Alternative FOR-rule

` {P[V−1/V] ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P}
` {P[E1−1/V]∧(E1−1≤E2)} FOR V := E1 UNTIL E2 DO C {P[E2/V]}

where neither V , nor any variable occurring in E1 or E2, is assigned to in the
command C.

The advantage of this rule is that the “special case” of executing the loop body

0 times can normally be handled without use of the FOR-axiom. Justify this claim.

2

34 Chapter 2. Floyd-Hoare Logic

2.1.12 Arrays

At the end of Section 2.1.1 it is shown that the naive array assignment axiom

` {P[E2/A(E1)]} A(E1) := E2 {P}

does not work, because of the possibility that changes to A(X) may also change

A(Y), A(Z), . . . (since X might equal Y , Z, . . .).

The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment

A := A{E1←E2}

where the term A{E1←E2} denotes an array identical to A, except that the E1-th

component is changed to have the value E2.

Thus an array assignment is just a special case of an ordinary variable assign-

ment.

The array assignment axiom

` {P[A{E1←E2}/A]} A(E1):=E2 {P}

Where A is an array variable, E1 is an integer valued expression, P is any
statement and the notation A{E1←E2} denotes the array identical to A, except
that A{E1←E2}(E1) = E2.

In order to reason about arrays, the following axioms, which define the meaning

of the notation A{E1←E2}, are needed.

The array axioms

` A{E1←E2}(E1) = E2

E1 6= E3 ⇒ ` A{E1←E2}(E3) = A(E3)

Example: We show

` {A(X)=x ∧ A(Y)=y}
BEGIN

VAR R;

R := A(X);

A(X) := A(Y);

A(Y) := R

END

{A(X)=y ∧ A(Y)=x}

2.1. Axioms and rules of Floyd-Hoare logic 35

Working backwards using the array assignment axiom:

` {A{Y←R}(X)=y ∧ A{Y←R}(Y)=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

By precondition strengthening using ` A{Y←R}(Y) = R

` {A{Y←R}(X)=y ∧ R=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

Continuing backwards

` {A{X←A(Y)}{Y←R}(X)=y ∧ R=x}
A(X) := A(Y)

{A{Y←R}(X)=y ∧ R=x}

` {A{X←A(Y)}{Y←A(X)}(X)=y ∧ A(X)=x}
R := A(X)

{A{X←A(Y)}{Y←R}(X)=y ∧ R=x}

Hence by the derived sequencing rule:

` {A{X←A(Y)}{Y←A(X)}(X)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

By the array axioms (considering the cases X=Y and X6=Y separately), it follows

that:

` A{X←A(Y)}{Y←A(X)}(X) = A(Y)

Hence:

` {A(Y)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

The desired result follows from the block rule.

2

Exercise 17

Show

` {A(X)=x ∧ A(Y)=y ∧ X6=Y}
A(X) := A(X) + A(Y);

A(Y) := A(X) - A(Y);

A(X) := A(X) - A(Y)

{A(X)=y ∧ A(Y)=x}

Why is the precondition X6=Y necessary? 2

36 Chapter 2. Floyd-Hoare Logic

Example: Suppose Csort is a command that is intended to sort the first n elements

of an array. To specify this formally, let SORTED(A,n) mean that:

A(1) ≤ A(2) ≤ . . . ≤ A(n)

A first attempt to specify that Csort sorts is:

{1 ≤ N} Csort {SORTED(A,N)}

This is not enough, however, because SORTED(A,N) can be achieved by simply ze-

roing the first N elements of A.

Exercise 18

Prove

` {1≤N}
FOR I:=1 UNTIL N DO A(I):=0

{SORTED(A,N)}

2

It is necessary to require that the sorted array is a rearrangement, or permutation,

of the original array.

To formalize this, let PERM(A,A′, N) mean that A(1), A(2), . . . , A(n) is a rear-

rangement of A′(1), A′(2), . . . , A′(n).

An improved specification that Csort sorts is then

{1≤N ∧ A=a} Csort {SORTED(A,N) ∧ PERM(A,a,N)}

However, this still is not correct2.

Exercise 19

Prove

` {1≤N}
N:=1

{SORTED(A,N) ∧ PERM(A,a,N)}

2

It is necessary to say explicitly that N is unchanged also. A correct specification is

thus:

{1≤N ∧ A=a ∧ N=n} Csort {SORTED(A,N) ∧ PERM(A,a,N) ∧ N=n}

2Thanks to an anonymous member of the 1990 class “Proving Programs Correct” for pointing
this out to me.

2.2. Soundness and completeness 37

2.2 Soundness and completeness

It is clear from the discussion of the FOR-rule in Section 2.1.11 that it is not always

straightforward to devise correct rules of inference. As discussed at the beginning

of Chapter 2, it is very important that the axioms and rules be sound. There are

two approaches to ensure this:

(i) Define the language by the axioms and rules of the logic.

(ii) Prove that the logic fits the language.

Approach (i) is called axiomatic semantics. The idea is to define the semantics

of the language by requiring that it make the axioms and rules of inference true. It

is then up to implementers to ensure that the logic matches the language. One snag

with this approach is that most existing languages have already been defined in

some other way (usually by informal and ambiguous natural language statements).

An example of a language defined axiomatically is Euclid [29]. The other snag with

axiomatic semantics is that it is known to be impossible to devise complete Floyd-

Hoare logics for certain constructs (this is discussed further below). It could be

argued that this is not a snag at all but an advantage, because it forces programming

languages to be made logically tractable. I have some sympathy for this latter view;

it is clearly not the position taken by the designers of Ada.

Approach (ii) requires that the axioms and rules of the logic be proved valid. To

do this, a mathematical model of states is constructed and then a function, Meaning

say, is defined which takes an arbitrary command C to a function Meaning (C) from

states to states. Thus Meaning (C) (s) denotes the state resulting from executing

command C in state s. The specification {P}C{Q} is then defined to be true if

whenever P is true in a state s and Meaning (C) (s) = s′ then Q is true in state s′. It

is then possible to attempt to prove rigorously that all the axioms are true and that

the rules of inference lead from true premisses to true conclusions. Actually carrying

out this proof is likely to be quite tedious, especially if the programming language

is at all complicated, and there are various technical details which require care (e.g.

defining Meaning to correctly model non-termination). The precise formulation of

such soundness proofs is not covered here, but details can be found in the text by

Loeckx and Sieber [28].

Even if we are sure that our logic is sound, how can we be sure that every

true specification can be proved? It might be the case that for some particular

P, Q and C the specification {P}C{Q} was true, but the rules of our logic were

too weak to prove it (see Exercise 7 on page 25 for an example). A logic is said

to be complete if every true statement in it is provable. There are various subtle

technical problems in formulating precisely what it means for a Floyd-Hoare logic to

be complete. For example, it is necessary to distinguish incompleteness arising due

to incompleteness in the assertion language (e.g. arithmetic) from incompleteness

38 Chapter 2. Floyd-Hoare Logic

due to inadequate axioms and rules for programming language constructs. The

completeness of a Floyd-Hoare logic must thus be defined independently of that of

its assertion language. Good introductions to this area can be found in Loeckx and

Sieber [28] and Clarke’s paper [9]. Clarke’s paper also contains a discussion of his

important results showing the impossibility of giving complete inference systems

for certain combinations of programming language constructs. For example, he

proves that it is impossible to give a sound and complete system for any language

combining procedures as parameters of procedure calls, recursion, static scopes,

global variables and internal procedures as parameters of procedure calls. These

features are found in Algol 60, which thus cannot have a sound and complete Floyd-

Hoare logic.

2.3 Some exercises

The exercises in this section have been taken from various sources, including Alagić

and Arbib’s book [1] and Cambridge University Tripos examinations.

Exercise 20

The exponentiation function exp satisfies:

exp(m, 0) = 1
exp(m,n+1) = m× exp(m,n)

Devise a command C that uses repeated multiplication to achieve the following

partial correctness specification:

{X = x ∧ Y = y ∧ Y ≥ 0} C {Z = exp(x, y) ∧ X = x ∧ Y = y}

Prove that your command C meets this specification. 2

Exercise 21

Show that

` {M≥0}
BEGIN

X:=0;

FOR N:=1 UNTIL M DO X:=X+N

END

{X=(M×(M+1)) DIV 2}
2

Exercise 22

Deduce:

` {S = (x×y)-(X×Y)}
WHILE ¬ODD(X) DO

BEGIN Y:=2×Y; X:=X DIV 2 END

{S = (x×y)-(X×Y) ∧ ODD(X)}
2

2.3. Some exercises 39

Exercise 23

Deduce:

` {S = (x×y)-(X×Y)}
WHILE ¬(X=0) DO

BEGIN

WHILE ¬ODD(X) DO

BEGIN Y:=2×Y; X:=X DIV 2 END;

S:=S+Y;

X:=X-1

END

{S = x×y}

2

Exercise 24

Deduce:

` {X=x ∧ Y=y}
BEGIN

S:=0;

WHILE ¬(X=0) DO

BEGIN

WHILE ¬ODD(X) DO

BEGIN Y:=2×Y; X:=X DIV 2 END;

S:=S+Y;

X:=X-1

END

END

{S = x×y}

2

Exercise 25

Prove the following invariant property.

` {S = (x-X)×y ∧ Y=y}
BEGIN

VAR R;

R:=0;

WHILE ¬(R=Y) DO

BEGIN S:=S+1; R:=R+1 END;

X:=X-1

END

{S = (x-X)×y}

Hint: Show that S = (x-X)×y + R is an invariant for S:=S+1; R:=R+1. 2

Exercise 26

Deduce:

40 Chapter 2. Floyd-Hoare Logic

` {X=x ∧ Y=y}
BEGIN

S:=0;

WHILE ¬(X=0) DO

BEGIN

VAR R;

R:=0;

WHILE ¬(R=Y) DO

BEGIN S:=S+1; R:=R+1 END;

X:=X-1

END

END

{S = x×y}

2

Exercise 27

Using P×XN=xn as an invariant, deduce:

` {X=x ∧ N=n}
BEGIN

P:=1;

WHILE ¬(N=0) DO

BEGIN

IF ODD(N) THEN P:=P×X;
N:=N DIV 2;

X:=X×X
END

END

{P = xn}

2

Exercise 28

Prove that the command

BEGIN

Z:=0;

WHILE ¬(X=0) DO

BEGIN

IF ODD(X) THEN Z:=Z+Y;

Y:=Y×2;
X:=X DIV 2

END

END

computes the product of the initial values of X and Y and leaves the result in Z. 2

Exercise 29

Prove that the command

2.3. Some exercises 41

BEGIN

Z:=1;

WHILE N>0 DO

BEGIN

IF ODD(N) THEN Z:=Z×X;
N:=N DIV 2;

X:=X×X
END

END

assigns xn to Z, where x and n are the initial values of X and N respectively and we

assume n ≥ 0. 2

Exercise 30

Devise a proof rule for a command

REPEAT command UNTIL statement

The meaning of REPEAT C UNTIL S is that C is executed and then S is tested; if

the result is true, then nothing more is done, otherwise the whole REPEAT command

is repeated. Thus REPEAT C UNTIL S is equivalent to C; WHILE ¬S DO C. 2

Exercise 31

Use your REPEAT rule to deduce:

` {S = C+R ∧ R<Y}
REPEAT

S:=S+1; R:=R+1

UNTIL R=Y

{S = C+Y}
2

Exercise 32

Use your REPEAT rule to deduce:

` {X=x ∧ Y=y}
BEGIN

S:=0;

REPEAT

R:=0;

REPEAT

S:=S+1; R:=R+1

UNTIL R=Y;

X:=X-1

UNTIL X=0

END

{S = x×y}
2

Exercise 33

Assume gcd(X,Y) satisfies:

42 Chapter 2. Floyd-Hoare Logic

` (X>Y) ⇒ gcd(X,Y)=gcd(X-Y,Y)

` gcd(X,Y)=gcd(Y,X)

` gcd(X,X)=X

Prove:

` {(A>0) ∧ (B>0) ∧ (gcd(A,B)=gcd(X,Y))}
WHILE A>B DO A:=A-B;

WHILE B>A DO B:=B-A

{(0<B) ∧ (B≤A) ∧ (gcd(A,B)=gcd(X,Y))}
Hence, or otherwise, use your rule for REPEAT commands to prove:

` {A=a ∧ B=b}
REPEAT

WHILE A>B DO A:=A-B;

WHILE B>A DO B:=B-A

UNTIL A=B

{A=B ∧ A=gcd(a,b)}
2

Exercise 34

Prove:

` {N≥1}
BEGIN

PROD=0;

FOR X:=1 UNTIL N DO PROD := PROD+M

END

{PROD = M×N}
2

Exercise 35

Prove:

` {X>0 ∧ Y>0}
BEGIN

S:=0;

FOR I:=1 UNTIL X DO

FOR J:=1 UNTIL Y DO

S:=S+1

END

{S = X×Y}
2

Exercise 36

In some programming languages (e.g. ALGOLW) the following specification would

be true:

` {Y=3}
FOR I:=1 UNTIL Y DO Y := Y+1

{Y=6}
Explain why this cannot be deduced using the FOR-rule given on page 32. Design a

more general FOR-rule, and use it to prove the above specification.

2

2.3. Some exercises 43

Exercise 37

(Hard!) Prove:

` {1≤N ∧ A=a ∧ N=n}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IF A(I)>A(J)

THEN BEGIN

VAR R;

R := A(I);

A(I) := A(J);

A(J) := R

END

{SORTED(A,N) ∧ PERM(A,a,N) ∧ N=n}
2

Outline solution

Warning: although I believe the outline proof below to be sound, I have not yet

fully checked all the details and so there may be errors and omissions.

We outline a proof that:

` {1≤N ∧ A=a ∧ N=n}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IF A(I)>A(J)

THEN BEGIN

VAR R;

R := A(I);

A(I) := A(J);

A(J) := R

END

{SORTED(A,N) ∧ PERM(A,a,N) ∧ N=n}

Let IFSWAP(A,I,J) abbreviate the command:

IF A(I)>A(J)

THEN BEGIN

VAR R;

R := A(I);

A(I) := A(J);

A(J) := R

END

Then what has to be proved is:

` {1≤N ∧ A=a ∧ N=n}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{SORTED(A,N) ∧ PERM(A,a,N) ∧ N=n}

By specification conjunction it is sufficient to prove.

44 Chapter 2. Floyd-Hoare Logic

` {1≤N}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{SORTED(A,N)}

and

` {1≤N ∧ A=a}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{PERM(A,a,N)}

and

` {N=n}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{N=n}

The proof of the second and third of these are easy. For the second, it is necessary

to use properties of the predicate PERM such as the following:

` PERM(A,A,N)

` PERM(A,A’,N) ∧ 1 ≤ I ≤ N ∧ 1 ≤ J ≤ N ⇒
PERM(A,A’{I←A’(J)}{J←A’(I)},N)

Using these properties one can show that swapping two elements in an array

preserves permutation, i.e.

` {PERM(A,a,N) ∧ 1≤I ∧ I≤N}
IFSWAP(A,I,J)

{PERM(A,a,N)}

Using the FOR-rule twice on this specification, followed by precondition strengthen-

ing with PERM using the first property above, establishes that the sorting command

only permutes the array. To show that it sorts the array into ascending order is

more complicated.

Notice that each inner FOR loop results in the minimum element in A(I), . . .,

A(N) being placed at position I. To formulate this formally, define MIN(A,I,J) to

mean that if 1 ≤ I ≤ J then A(I) is less than or equal to each of A(I+1), . . .,

A(J-1). It is intuitively clear that MIN has the properties:

` MIN(A,I,J) ∧ A(I)≤A(J) ⇒ MIN(A,I,J+1)

` MIN(A,I,J) ∧ A(I)≥A(J) ⇒ MIN(A{I←A(J)}{J←A(I)},I,J+1)

Using these properties it is straightforward to prove:

` {MIN(A,I,J)} IFSWAP(A,I,J) {MIN(A,I,J+1)}

and hence by the FOR-rule

2.3. Some exercises 45

` {1≤N ∧ MIN(A,I,I+1)}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{MIN(A,I,N)}

and hence, since ` MIN(A,I,I+1), it follows by precondition strengthening that:

` {1≤N}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

{MIN(A,I,N)}

Using various properties of MIN and SORTED one can also show that

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1) ∧ I≤J}
IFSWAP(A,I,J)

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1)}

and hence by the FOR-rule

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1) ∧ I≤I+1}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1)}

which simplifies, by precondition strengthening and postcondition weakening, to:

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1)}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

` {SORTED(A,I-1)}

hence by specification conjunction (using a previously proved result):

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1) ∧ 1≤N}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

` {SORTED(A,I-1) ∧ MIN(A,I,N)}

hence by postcondition weakening

` {SORTED(A,I-1) ∧ MIN(A,I-1,N+1) ∧ 1≤N}
FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

` {SORTED(A,I)}

hence by the FOR-rule (noticing that SORTED(A,I) is equivalent to

SORTED(A,(I+1)-1))

` {SORTED(A,1-1) ∧ MIN(A,1-1,N+1) ∧ 1≤N}
FOR I:=1 UNTIL N DO

FOR J:=I+1 UNTIL N DO

IFSWAP(A,I,J)

` {SORTED(A,(N+1)-1)}

which simplifies to the desired result using 1-1=0 and properties of SORTED and MIN.

46 Chapter 2. Floyd-Hoare Logic

Chapter 3

Mechanizing Program Verification

The architecture of a simple program verifier is described. Its operation

is justified with respect to the rules of Floyd-Hoare logic.

After doing only a few exercises, the following two things will be painfully clear:

(i) Proofs are typically long and boring (even if the program being verified is

quite simple).

(ii) There are lots of fiddly little details to get right, many of which are trivial

(e.g. proving ` (R=X ∧ Q=0) ⇒ (X = R + Y×Q)).

Many attempts have been made (and are still being made) to automate proof

of correctness by designing systems to do the boring and tricky bits of generating

formal proofs in Floyd-Hoare logic. Unfortunately logicians have shown that it is

impossible in principle to design a decision procedure to decide automatically the

truth or falsehood of an arbitrary mathematical statement [13]. However, this does

not mean that one cannot have procedures that will prove many useful theorems.

The non-existence of a general decision procedure merely shows that one cannot

hope to prove everything automatically. In practice, it is quite possible to build a

system that will mechanize many of the boring and routine aspects of verification.

This chapter describes one commonly taken approach to doing this.

Although it is impossible to decide automatically the truth or falsity of arbi-

trary statements, it is possible to check whether an arbitrary formal proof is valid.

This consists in checking that the results occurring on each line of the proof are

indeed either axioms or consequences of previous lines. Since proofs of correctness

of programs are typically very long and boring, they often contain mistakes when

generated manually. It is thus useful to check proofs mechanically, even if they can

only be generated with human assistance.

3.1 Overview

In the previous chapter it was shown how to prove {P}C{Q} by proving properties

of the components of C and then putting these together (with the appropriate proof

rule) to get the desired property of C itself. For example, to prove ` {P}C1;C2{Q}

47

48 Chapter 3. Mechanizing Program Verification

first prove ` {P}C1{R} and ` {R}C2{Q} (for suitable R), and then deduce `
{P}C1;C2{Q} by the sequencing rule.

This process is called forward proof because one moves forward from axioms via

rules to conclusions. In practice, it is more natural to work backwards: starting

from the goal of showing {P}C{Q} one generates subgoals, subsubgoals etc. until

the problem is solved. For example, suppose one wants to show:

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

then by the assignment axiom and sequencing rule it is sufficient to show the subgoal

{X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}

(because ` {R=x ∧ X=y} Y:=R {Y=x ∧ X=y}). By a similar argument this sub-

goal can be reduced to

{X=x ∧ Y=y} R:=X {R=x ∧ Y=y}

which clearly follows from the assignment axiom.

This chapter describes how such a goal oriented method of proof can be formal-

ized.

The verification system described here can be viewed as a proof checker that

also provides some help with generating proofs. The following diagram gives an

overview of the system.

Specification to be proved

?

• human expert

Annotated specification

?

• vc generator

Set of logic statements (vc’s)

?

• theorem prover

Simplified set of
verification conditions

?

• human expert

End of proof

3.2. Verification conditions 49

The system takes as input a partial correctness specification annotated with

mathematical statements describing relationships between variables. From the an-

notated specification the system generates a set of purely mathematical statements,

called verification conditions (or vc’s). In Section 3.5 it is shown that if these verifi-

cation conditions are provable, then the original specification can be deduced from

the axioms and rules of Floyd-Hoare logic.

The verification conditions are passed to a theorem prover program which at-

tempts to prove them automatically; if it fails, advice is sought from the user. We

will concentrate on those aspects pertaining to Floyd-Hoare logic and say very little

about theorem proving here.

The aim of much current research is to build systems which reduce the role of

the slow and expensive human expert to a minimum. This can be achieved by:

• reducing the number and complexity of the annotations required, and

• increasing the power of the theorem prover.

The next section explains how verification conditions work. In Section 3.5 their

use is justified in terms of the axioms and rules of Floyd-Hoare logic. Besides being

the basis for mechanical verification systems, verification conditions are a useful

way of doing proofs by hand.

3.2 Verification conditions

The following sections describe how a goal oriented proof style can be formalized.

To prove a goal {P}C{Q}, three things must be done. These will be explained in

detail later, but here is a quick overview:

(i) The program C is annotated by inserting into it statements (often called as-

sertions) expressing conditions that are meant to hold at various intermediate

points. This step is tricky and needs intelligence and a good understanding of

how the program works. Automating it is a problem of artificial intelligence.

(ii) A set of logic statements called verification conditions (vc’s for short) is then

generated from the annotated specification. This process is purely mechanical

and easily done by a program.

(iii) The verification conditions are proved. Automating this is also a problem of

artificial intelligence.

It will be shown that if one can prove all the verification conditions generated

from {P}C{Q} (where C is suitably annotated), then ` {P}C{Q}.
Since verification conditions are just mathematical statements, one can think of

step 2 above as the ‘compilation’, or translation, of a verification problem into a

conventional mathematical problem.

50 Chapter 3. Mechanizing Program Verification

The following example will give a preliminary feel for the use of verification

conditions.

Suppose the goal is to prove (see the example on page 28)

{T}
BEGIN

R:=X;

Q:=0;

WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

END

{X = R+Y×Q ∧ R<Y}

This first step ((i) above) is to insert annotations. A suitable annotated specification

is:

{T}
BEGIN

R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1

WHILE Y≤R DO {X = R+Y×Q} ←−P2

BEGIN R:=R-Y; Q:=Q+1 END

END

{X = R+Y×Q ∧ R<Y}
The annotations P1 and P2 state conditions which are intended to hold whenever

control reaches them. Control only reaches the point at which P1 is placed once,

but it reaches P2 each time the WHILE body is executed and whenever this happens

P2 (i.e. X=R+Y×Q) holds, even though the values of R and Q vary. P2 is an invariant

of the WHILE-command.

The second step ((ii) above), which has yet to be explained, will generate the

following four verification conditions:

(i) T ⇒ (X=X ∧ 0=0)

(ii) (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))

(iii) (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X = (R-Y)+(Y×(Q+1)))

(iv) (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

Notice that these are statements of arithmetic; the constructs of our programming

language have been ‘compiled away’.

The third step ((iii) above) consists in proving these four verification conditions.

These are all well within the capabilities of modern automatic theorem provers.

3.3 Annotation

An annotated command is a command with statements (called assertions) embed-

ded within it. A command is said to be properly annotated if statements have been

inserted at the following places:

3.4. Verification condition generation 51

(i) Before each command Ci (where i > 1) in a sequence C1;C2; . . . ;Cn which

is not an assignment command,

(ii) After the word DO in WHILE and FOR commands.

Intuitively, the inserted assertions should express the conditions one expects to hold

whenever control reaches the point at which the assertion occurs.

A properly annotated specification is a specification {P}C{Q} where C is a

properly annotated command.

Example: To be properly annotated, assertions should be at points 1© and 2© of

the specification below:

{X=n}
BEGIN

Y:=1; ←− 1©
WHILE X6=0 DO ←− 2©
BEGIN Y:=Y×X; X:=X-1 END

END

{X=0 ∧ Y=n!}

Suitable statements would be:

at 1©: {Y = 1 ∧ X = n}
at 2©: {Y×X! = n!}

2

The verification conditions generated from an annotated specification {P}C{Q}
are described by considering the various possibilities for C in turn. This process is

justified in Section 3.5 by showing that ` {P}C{Q} if all the verification conditions

can be proved.

3.4 Verification condition generation

In this section a procedure is described for generating verification conditions for an

annotated partial correctness specification {P}C{Q}. This procedure is recursive

on C.

52 Chapter 3. Mechanizing Program Verification

Assignment commands

The single verification condition generated by

{P} V :=E {Q}

is
P ⇒ Q[E/V]

The single verification condition generated by

{P} A(E1):=E2 {Q}

is
P ⇒ Q[A{E1←E2}/A]

Example: The verification condition for

{X=0} X:=X+1 {X=1}

is

X=0 ⇒ (X+1)=1

(which is clearly true). 2

Verifications for array assignments are obtained by treating A(E1):=E2 as the

ordinary assignment A := A{E1←E2} as discussed in Section 2.1.12.

One-armed conditional

The verification conditions generated by

{P} IF S THEN C {Q}

are

(i) (P ∧ ¬S) ⇒ Q

(ii) the verification conditions generated by

{P ∧ S} C {Q}

Example: The verification conditions for

{T} IF X<0 THEN X:=-X {X≥0}

are T ∧ ¬(X<0) ⇒ X≥0 together with the verification con-

ditions for {T ∧ (X<0)} X:=-X {X≥0}, i.e. T ∧ (X<0) ⇒ -X≥0. The two vc’s

are thus:

3.4. Verification condition generation 53

(i) T ∧ ¬(X<0) ⇒ X≥0

(ii) T ∧ (X<0) ⇒ -X≥0

These are equivalent to X≥0 ⇒ X≥0 and X<0 ⇒ -X≥0, respectively, which are

both clearly true. 2

Two-armed conditional

The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}

are

(i) the verification conditions generated by

{P ∧ S} C1 {Q}

(ii) the verification conditions generated by

{P ∧ ¬S} C2 {Q}

Exercise 38

What are the verification conditions for the following specification?

{T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

Do they follow from the assumptions about max(X,Y) given in the example on page

26? 2

If C1; . . . ;Cn is properly annotated, then (see page 50) it must be of one of the

two forms:

1. C1; . . . ;Cn−1;{R}Cn, or

2. C1; . . . ;Cn−1;V := E.

where, in both cases, C1; . . . ;Cn−1 is a properly annotated command.

54 Chapter 3. Mechanizing Program Verification

Sequences

1. The verification conditions generated by

{P} C1; . . . ;Cn−1; {R} Cn {Q}

(where Cn is not an assignment) are:

(a) the verification conditions generated by

{P} C1; . . . ;Cn−1 {R}

(b) the verification conditions generated by

{R} Cn {Q}

2. The verification conditions generated by

{P} C1; . . . ;Cn−1;V :=E {Q}

are the verification conditions generated by

{P} C1; . . . ;Cn−1 {Q[E/V]}

Example: The verification conditions generated from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

are those generated by

{X=x ∧ Y=y} R:=X; X:=Y {(X=y ∧ Y=x)[R/Y]}

which, after doing the substitution, simplifies to

{X=x ∧ Y=y} R:=X; X:=Y {X=y ∧ R=x}

The verification conditions generated by this are those generated by

{X=x ∧ Y=y} R:=X {(X=y ∧ R=x)[Y/X]}

which, after doing the substitution, simplifies to

{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}.

The only verification condition generated by this is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

which, after doing the substitution, simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

3.4. Verification condition generation 55

which is obviously true. 2

The procedure for generating verification conditions from blocks involves check-

ing the syntactic condition that the local variables of the block do not occur in

the precondition or postcondition. The need for this is clear from the side condi-

tion in the block rule (see page 24); this will be explained in more detail when the

procedure for generating verification conditions is justified in Section 3.5.

Blocks

The verification conditions generated by

{P} BEGIN VAR V1; . . . ;VAR Vn;C END {Q}

are

(i) the verification conditions generated by {P}C{Q}, and

(ii) the syntactic condition that none of V1, . . ., Vn occur in either P or Q.

Example: The verification conditions for

{X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {X=y ∧ Y=x}

are those generated by {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x} (since R

does not occur in {X=x ∧ Y=y} or {X=y ∧ Y=x}). See the previous example for the

verification conditions generated by this. 2

Exercise 39

What are the verification conditions for the following specification?

{X = R+(Y×Q)} BEGIN R:=R-Y; Q:=Q+1 END {X = R+(Y×Q)}

2

Exercise 40

What are the verification conditions for the following specification?

{X=x} BEGIN VAR X; X:=1 END {X=x}

Relate your answer to this exercise to your answer to Exercise 7 on page 25. 2

A correctly annotated specification of a WHILE-command has the form

{P} WHILE S DO {R} C {Q}

Following the usage on page 28, the annotation R is called an invariant.

56 Chapter 3. Mechanizing Program Verification

WHILE-commands

The verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R ∧ S} C{R}.

Example: The verification conditions for

{R=X ∧ Q=0}
WHILE Y≤R DO {X=R+Y×Q}

BEGIN R:=R-Y; Q=Q+1 END

{X = R+(Y×Q) ∧ R<Y}
are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

together with the verification condition for

{X = R+(Y×Q) ∧ (Y≤R)}
BEGIN R:=R-Y; Q:=Q+1 END

{X=R+(Y×Q)}

which (see Exercise 39) consists of the single condition

(iii) X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

The WHILE-command specification is thus true if (i), (ii) and (iii) hold, i.e.

` {R=X ∧ Q=0}
WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

{X = R+(Y×Q) ∧ R<Y}
if

` R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

and

` X = R+(Y×Q) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

and

` X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

3.4. Verification condition generation 57

2

Exercise 41

What are the verification conditions generated by the annotated program for com-

puting n! (the factorial of n) given in the example on page 51? 2

A correctly annotated specification of a FOR-command has the form

{P} FOR V :=E1 UNTIL E2 DO {R} C {Q}

FOR-commands

The verification conditions generated from

{P} FOR V :=E1 UNTIL E2 DO {R} C {Q}

are

(i) P ⇒ R[E1/V]

(ii) R[E2+1/V] ⇒ Q

(iii) P ∧ E2 < E1 ⇒ Q

(iv) the verification conditions generated by

{R ∧ E1 ≤ V ∧ V ≤ E2} C {R[V + 1/V]}

(v) the syntactic condition that neither V , nor any variable occurring in E1

or E2, is assigned to inside C.

Example: The verification conditions generated by

{X=0 ∧ 1≤M}
FOR N:=1 UNTIL M DO {X=((N-1)×N) DIV 2} X:=X+N

{X = (M×(M+1)) DIV 2}
are

(i) X=0 ∧ 1≤M ⇒ X=((1-1)×1) DIV 2

(ii) X = (((M+1)-1)×(M+1)) DIV 2 ⇒ X = (M×(M+1)) DIV 2

(iii) X=0 ∧ 1≤M ∧ M<1 ⇒ X = (M×(M+1)) DIV 2

(iv) The verification condition generated by

{X = ((N-1)×N) DIV 2 ∧ 1≤N ∧ N≤M}
X:=X+N

{X = (((N+1)-1)×(N+1)) DIV 2}

which, after some simplification, is

X = ((N-1)× N) DIV 2 ∧ 1 ≤ N

⇒
N ≤ M ⇒ X+N = (N× (N+1)) DIV 2

58 Chapter 3. Mechanizing Program Verification

which is true since

(N− 1)× N

2
+ N =

2N + (N− 1)× N

2

=
2N + N2−N

2

=
N + N2

2

=
N× (N + 1)

2

(Exercise: justify this calculation in the light of the fact that

(x+ y) DIV z 6= (x DIV z) + (y DIV z)

as is easily seen by taking x, y and z to be 3, 5 and 8, respectively.)

(v) Neither N or M is assigned to in X:=X+N

2

3.5 Justification of verification conditions

It will be shown in this section that an annotated specification {P}C{Q} is provable

in Floyd-Hoare logic (i.e. ` {P}C{Q}) if the verification conditions generated by

it are provable. This shows that the verification conditions are sufficient , but not

that they are necessary. In fact, the verification conditions are the weakest sufficient

conditions, but we will neither make this more precise nor go into details here. An

in-depth study of preconditions can be found in Dijkstra’s book [10].

It is easy to show (see the exercise below) that the verification conditions are

not necessary, i.e. that the verification conditions for {P}C{Q} not being provable

doesn’t imply that ` {P}C{Q} cannot be deduced.

Exercise 42

Show that

(i) The verification conditions from the annotated specification

{T} WHILE F DO {F} X:=0 {T}

are not provable.

(ii) ` {T} WHILE F DO X:=0 {T}

2

3.5. Justification of verification conditions 59

The argument that the verification conditions are sufficient will be by induction

on the structure of C. Such inductive arguments have two parts. First, it is shown

that the result holds for assignment commands. Second, it is shown that when C is

not an assignment command, then if the result holds for the constituent commands

of C (this is called the induction hypothesis), then it holds also for C. The first

of these parts is called the basis of the induction and the second is called the step.

From the basis and the step it follows that the result holds for all commands.

Assignments

The only verification condition for {P}V :=E{Q} is P ⇒ Q[E/V]. If this is prov-

able, then as ` {Q[E/V]}V :=E{Q} (by the assignment axiom on page 19) it

follows by precondition strengthening (page 21) that ` {P}V := E{Q}.

One-armed conditionals

If the verification conditions for {P} IF S THEN C {Q} are provable, then `
P ∧ ¬S ⇒ Q and all the verification conditions for {P ∧ S} C {Q} are provable.

Hence by the induction hypothesis ` {P ∧ S} C {Q} and hence by the one-armed

conditional rule (page 26) it follows that ` {P} IF S THEN C {Q}.

Two-armed conditionals

If the verification conditions for {P} IF S THEN C1 ELSE C2 {Q} are provable, then

the verification conditions for both {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q} are

provable. By the induction hypothesis we can assume that ` {P ∧ S} C1 {Q}
and ` {P ∧ ¬S} C2 {Q}. Hence by the two-armed conditional rule (page 26)

` {P} IF S THEN C1 ELSE C2 {Q}.

Sequences

There are two cases to consider:

(i) If the verification conditions for {P} C1; . . . ;Cn−1;{R}Cn {Q} are prov-

able, then the verification conditions for {P} C1; . . . ;Cn−1 {R} and

{R} Cn {Q} must both be provable and hence by induction we have `
{P} C1; . . . ;Cn−1 {R} and ` {R} Cn {Q}. Hence by the sequencing rule

(page 23) ` {P} C1; . . . ; Cn−1;Cn {Q}.

(ii) If the verification conditions for {P} C1; . . . ;Cn−1;V := E {Q} are

provable, then it must be the case that the verification conditions for

{P} C1; . . . ;Cn−1 {Q[E/V]} are also provable and hence by induction we

have ` {P} C1; . . . ;Cn−1 {Q[E/V]}. It then follows by the assignment

axiom that ` {Q[E/V]} V := E {Q}, hence by the sequencing rule

` {P} C1; . . . ;Cn−1;V := E{Q}.

60 Chapter 3. Mechanizing Program Verification

Blocks

If the verification conditions for {P}BEGIN VAR V1; . . . ;VAR Vn;C END {Q} are

provable, then the verification conditions for {P} C {Q} are provable and V1, . . .,

Vn do not occur in P or Q. By induction ` {P} C {Q} hence by the block rule

(page 24) ` {P} BEGIN VAR V1; . . . ;VAR Vn;C END {Q}.

WHILE-commands

If the verification conditions for {P} WHILE S DO {R} C {Q} are provable, then

` P ⇒ R, ` (R ∧ ¬S) ⇒ Q and the verification conditions for {R ∧ S} C {R}
are provable. By induction ` {R ∧ S} C {R}, hence by the WHILE-rule (page 28)

` {R} WHILE S DO C {R ∧ ¬S}, hence by the consequence rules (see page 22)

` {P} WHILE S DO C {Q}.

FOR-commands

Finally, if the verification conditions for

{P} FOR V := E1 UNTIL E2 DO {R} C {Q}

are provable, then

(i) ` P ⇒ R[E1/V]

(ii) ` R[E2 + 1/V] ⇒ Q

(iii) ` P ∧ E2 < E1 ⇒ Q

(iv) The verification conditions for

{R ∧ E1 ≤ V ∧ V ≤ E2} C {R[V + 1/V]}

are provable.

(v) Neither V , nor any variable in E1 or E2, is assigned to in C.

By induction ` {R ∧ E1 ≤ V ∧ V ≤ E2} C {R[V +1/V]}, hence by the FOR-rule

` {R[E1/V] ∧ E1 ≤ E2} FOR V := E1 UNTIL E2 DO C {R[E2 + 1/V]}

hence by (i), (ii) and the consequence rules

(vi) ` {P ∧ E1 ≤ E2} FOR V := E1 UNTIL E2 DO C {Q}.

Now by the FOR-axiom (see page 32) with P instantiated to P ∧ E2 < E1, followed

by Precondition Strengthening (to eliminate the repeated E2 < E1):

` {P ∧ E2 < E1} FOR V := E1 UNTIL E2 DO C {P ∧ E2 < E1},

hence by the consequence rules and (iii)

3.5. Justification of verification conditions 61

` {P ∧ E2 < E1} FOR V := E1 UNTIL E2 DO C {Q}.

Combining this last specification with (vi) using specification disjunction (page 22)

yields

` {P ∧ E2 < E1) ∨ (P ∧ E1 ≤ E2)} FOR V := E1 UNTIL E2 DO C {Q ∨ Q}

Now ` Q ∨ Q ⇒ Q and

` (P ∧ E2 < E1) ∨ (P ∧ E1 ≤ E2) ⇔ P ∧ (E2 < E1 ∨ E1 ≤ E2)

but ` E2 < E1 ∨ E1 ≤ E2, hence

` P ⇒ (P ∧ E2 < E1) ∨ (P ∧ E1 ≤ E2)

and so one can conclude:

` {P} FOR V := E1 UNTIL E2 DO C {Q}

Thus the verification conditions for the FOR-command are sufficient.

Exercise 43

Annotate the specifications in Exercises 21 to 29 (they start on page 38) and then

generate the corresponding verification conditions. 2

Exercise 44

Devise verification conditions for commands of the form

REPEAT C UNTIL S

(See Exercise 30, page 41.) 2

Exercise 45

Do Exercises 31–35 using verification conditions. 2

Exercise 46

With the rules given, can one prove by induction on the structure of C that if no

variable occurring in P is assigned to in C, then ` {P} C{P}? 2

Exercise 47

Consider the following alternative scheme, due to Silas Brown, for generating VCs

from annotated WHILE-commands.

62 Chapter 3. Mechanizing Program Verification

WHILE-commands

Alternative verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ∧ S ⇒ R

(ii) P ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R} C{(Q ∧ ¬S) ∨ (R ∧ S)}.

Either justify these VCs, or find a counterexample. 2

Chapter 4

Total Correctness

The axioms and rules of Floyd-Hoare logic are extended to total cor-

rectness. Verification conditions for total correctness specifications are

given.

In Section 1.3 the notation [P] C [Q] was introduced for the total correctness spec-

ification that C halts in a state satisfying Q whenever it is executed in a state

satisfying P . At the end of the section describing the WHILE-rule (Section 2.1.10),

it is shown that the rule is not valid for total correctness specifications. This is

because WHILE-commands may introduce non-termination. None of the other com-

mands can introduce non-termination, and thus the rules of Floyd-Hoare logic can

be used.

4.1 Axioms and rules for non-looping commands

Replacing curly brackets by square ones results in the following axioms and rules.

Assignment axiom for total correctness

` [P[E/V]] V :=E [P]

Precondition strengthening for total correctness

` P ⇒ P ′, ` [P ′] C [Q]

` [P] C [Q]

Postcondition weakening for total correctness

` [P] C [Q′], ` Q′ ⇒ Q

` [P] C [Q]

Specification conjunction for total correctness

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∧ P2] C [Q1 ∧Q2]

Specification disjunction for total correctness

63

64 Chapter 4. Total Correctness

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∨ P2] C [Q1 ∨Q2]

Sequencing rule for total correctness

` [P] C1 [Q], ` [Q] C2 [R]

` [P] C1;C2 [R]

Derived sequencing rule for total correctness

` P ⇒ P1

` [P1] C1 [Q1] ` Q1 ⇒ P2

` [P2] C2 [Q2] ` Q2 ⇒ P3

. .

. .

. .
` [Pn] Cn [Qn] ` Qn ⇒ Q

` [P] C1; . . . ; Cn [Q]

Block rule for total correctness

` [P] C [Q]

` [P] BEGIN VAR V1; . . . ; VAR Vn; C END [Q]

Where none of the variables V1, . . . , Vn occur in P or Q.

Derived block rule for total correctness

` P ⇒ P1

` [P1] C1 [Q1] ` Q1 ⇒ P2

` [P2] C2 [Q2] ` Q2 ⇒ P3

. .

. .

. .
` [Pn] Cn [Qn] ` Qn ⇒ Q

` [P] BEGIN VAR V1; . . . VAR Vn;C1; . . . ; Cn [Q]

Where none of the variables V1, . . . , Vn occur in P or Q.

Conditional rules for total correctness

` [P ∧ S] C [Q], ` P ∧ ¬S ⇒ Q

` [P] IF S THEN C [Q]

` [P ∧ S] C1 [Q], ` [P ∧ ¬S] C2 [Q]

` [P] IF S THEN C1 ELSE C2 [Q]

FOR-axiom and rule for total correctness

` [P ∧ (E1 ≤ V) ∧ (V ≤ E2)] C [P[V +1/V]]

` [P[E1/V]∧(E1≤E2)] FOR V := E1 UNTIL E2 DO C [P[E2+1/V]]

4.2. Derived rule for total correctness of non-looping commands 65

Where neither V , nor any variable occurring in E1 or E2, is assigned to

in the command C.

` [P ∧ (E2 < E1)] FOR V := E1 UNTIL E2 DO C [P]

4.2 Derived rule for total correctness of non-
looping commands

The rules just given are formally identical to the corresponding rules of Floyd-Hoare

logic, except that they have [and] instead of { and }. It is thus clear that the

following is a valid derived rule.

` {P} C {Q}
` [P] C [Q]

If C contains no WHILE-commands.

4.3 The termination of assignments

Note that the assignment axiom for total correctness states that assignment com-

mands always terminate, which implicitly assumes that all function applications in

expressions terminate. This might not be the case if functions could be defined

recursively. For example, consider the assignment: X := fact(−1), where fact(n)

is defined recursively by:

fact(n) = if n = 0 then 1 else n× fact(n− 1)

It is also assumed that erroneous expressions like 1/0 do not cause problems.

Most programming languages will cause an error stop when division by zero is

encountered encountered. However, in our logic it follows that:

` [T] X := 1/0 [X = 1/0]

i.e. the assignment X := 1/0 always halts in a state in which the condition X = 1/0

holds. This assumes that 1/0 denotes some value that X can have. There are two

possibilities:

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

It seems at first sight that adopting (ii) is the most natural choice. However, this

makes it tricky to see what arithmetical laws should hold. For example, is (1/0)×0

equal to 0 or to some ‘error value’? If the latter, then it is no longer the case that

n × 0 = 0 is a valid general law of arithmetic? It is possible to make everything

66 Chapter 4. Total Correctness

work with undefined and/or error values, but the resultant theory is a bit messy.

We shall assume here that arithmetic expressions always denote numbers, but in

some cases exactly what the number is will be not fully specified. For example, we

will assume that m/n denotes a number for any m and n, but the only property of

“/” that will be assumed is:

¬(n = 0) ⇒ (m/n)× n = m

It is not possible to deduce anything about m/0 from this, in particular it is not

possible to deduce (m/0) × 0 = 0. In fact, sometimes it may be assumed that

numbers are integers. In this case, the defining property of “/” is:

¬(n = 0) ∧ p× n = m ⇒ (m/n) = p

4.4 WHILE-rule for total correctness

WHILE-commands are the only commands in our little language that can cause non-

termination, they are thus the only kind of command with a non-trivial termina-

tion rule. The idea behind the WHILE-rule for total correctness is that to prove

WHILE S DO C terminates one must show that some non-negative quantity decreases

on each iteration of C. This decreasing quantity is called a variant. In the rule

below, the variant is E, and the fact that it decreases is specified with an auxil-

iary variable n. An extra hypothesis, ` P ∧ S ⇒ E ≥ 0, ensures the variant is

non-negative.

WHILE-rule for total correctness

` [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ` P ∧ S ⇒ E ≥ 0

` [P] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression and n is an auxiliary variable not oc-
curring in P , C, S or E.

Example: We show:

` [Y > 0] WHILE Y≤R DO BEGIN R:=R-Y; Q:=Q+1 END [T]

Take

P = Y > 0

S = Y ≤ R

E = R

C = BEGIN R:=R-Y Q:=Q+1 END

We want to show ` [P] WHILE S DO C [T]. By the WHILE-rule for total correctness

it is sufficiant to show:

4.5. Termination specifications 67

(i) ` [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ` P ∧ S ⇒ E ≥ 0

The first of these, (i), can be proved by establishing

` {P ∧ S ∧ (E = n)} C {P ∧ (E < n)}

and then using the total correctness rule for non-looping commands. The verifica-

tion condition for this partial correctness specification is:

Y > 0 ∧ Y ≤ R ∧ R = n ⇒ (Y > 0 ∧ R < n)[Q+1/Q][R−Y/R]

i.e.

Y > 0 ∧ Y ≤ R ∧ R = n ⇒ Y > 0 ∧ R−Y < n

which follows from the laws of arithmetic.

The second subgoal, (ii), is just ` Y > 0 ∧ Y ≤ R⇒ R ≥ 0, which follows from

the laws of arithmetic. 2

4.5 Termination specifications

As already discussed in Section 1.3, the relation between partial and total correct-

ness is informally given by the equation:

Total correctness = Termination + Partial correctness.

This informal equation above can now be represented by the following two formal

rule of inferences.

` {P} C {Q}, ` [P] C [T]

` [P] C [Q]

` [P] C [Q]

` {P} C {Q}, ` [P] C [T]

Exercise 48

Are these two rules derivable from the other rules? 2

4.6 Verification conditions for termination

The idea of verification conditions is easily extended to deal with total correctness.

To generate verification conditions for WHILE-commands, it is necessary to add a

variant as an annotation in addition to an invariant. No other extra annotations are

needed for total correctness. We assume this is added directly after the invariant,

68 Chapter 4. Total Correctness

surrounded by square brackets. A correctly annotated total correctness specification

of a WHILE-command thus has the form

[P] WHILE S DO {R}[E] C [Q]

where R is the invariant and E the variant. Note that the variant is intended to

be a non-negative expression that decreases each time around the WHILE loop. The

other annotations, which are enclosed in curly brackets, are meant to be conditions

that are true whenever control reaches them. The use of square brackets around

variant annotations is meant to be suggestive of this difference.

The rules for generating verification conditions from total correctness specifica-

tions are now given in the same format as the rules for generating partial correctness

verification conditions given in Section 3.4.

4.7 Verification condition generation

Assignment commands

The single verification condition generated by

[P] V :=E [Q]

is
P ⇒ Q[E/V]

Example: The verification condition for

[X=0] X:=X+1 [X=1]

is

X=0 ⇒ (X+1)=1

This is the same as for partial correctness. 2

One-armed conditional

The verification conditions generated by

[P] IF S THEN C [Q]

are

(i) (P ∧ ¬S) ⇒ Q

(ii) the verification conditions generated by [P ∧ S] C [Q]

4.7. Verification condition generation 69

Example: The verification conditions for

[T] IF X<0 THEN X:=-X [X≥0]

are T ∧ ¬(X<0) ⇒ X≥0 together with the verification conditions for

[T ∧ (X<0)] X:=-X [X≥0], i.e. T ∧ (X<0) ⇒ -X≥0. The two verification con-

ditions are thus: T ∧ ¬(X>0) ⇒ X≥0 and T ∧ (X<0) ⇒ -X≥0. These are both

clearly true. 2

Two-armed conditional

The verification conditions generated from

[P] IF S THEN C1 ELSE C2 [Q]

are

(i) the verification conditions generated by [P ∧ S] C1 [Q]

(ii) the verification conditions generated by [P ∧ ¬S] C2 [Q]

Exercise 49

What are the verification conditions for the following specification?

[T] IF X≥Y THEN MAX:=X ELSE MAX:=Y [MAX=max(X,Y)]

2

If C1; . . . ;Cn is properly annotated, then (see page 50) it must be of one of the

two forms:

1. C1; . . . ;Cn−1;{R}Cn, or

2. C1; . . . ;Cn−1;V := E.

where, in both cases, C1; . . . ;Cn−1 is a properly annotated command.

70 Chapter 4. Total Correctness

Sequences

1. The verification conditions generated by

[P] C1; . . . ;Cn−1; {R} Cn [Q]

(where Cn is not an assignment) are:

(a) the verification conditions generated by

[P] C1; . . . ;Cn−1 [R]

(b) the verification conditions generated by

[R] Cn [Q]

2. The verification conditions generated by

[P] C1; . . . ;Cn−1;V :=E [Q]

are the verification conditions generated by

[P] C1; . . . ;Cn−1 [Q[E/V]]

Example: The verification conditions generated from

[X=x ∧ Y=y] R:=X; X:=Y; Y:=R [X=y ∧ Y=x]

are those generated by

[X=x ∧ Y=y] R:=X; X:=Y [(X=y ∧ Y=x)[R/Y]]

which, after doing the substitution, simplifies to

[X=x ∧ Y=y] R:=X; X:=Y [X=y ∧ R=x]

The verification conditions generated by this are those generated by

[X=x ∧ Y=y] R:=X [(X=y ∧ R=x)[Y/X]]

which, after doing the substitution, simplifies to

[X=x ∧ Y=y] R:=X [Y=y ∧ R=x].

The only verification condition generated by this is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

which, after doing the substitution, simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

4.7. Verification condition generation 71

which is obviously true. 2

Blocks

The verification conditions generated by

[P] BEGIN VAR V1; . . . ;VAR Vn;C END [Q]

are

(i) the verification conditions generated by [P] C [Q], and

(ii) the syntactic condition that none of V1, . . ., Vn occur in either P or Q.

Example: The verification conditions for

[X=x ∧ Y=y] BEGIN VAR R; R:=X; X:=Y; Y:=R END [X=y ∧ Y=x]

are those generated by [X=x ∧ Y=y] R:=X; X:=Y; Y:=R [X=y ∧ Y=x] (since R

does not occur in [X=x ∧ Y=y] or [X=y ∧ Y=x]). See the previous example for the

verification conditions generated by this. 2

A correctly annotated specification of a WHILE-command has the form

[P] WHILE S DO {R}[E] C [Q]

WHILE-commands

The verification conditions generated from

[P] WHILE S DO {R}[E] C [Q]

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) R ∧ S ⇒ E ≥ 0

(iv) the verification conditions generated by

[R ∧ S ∧ (E = n)] C[R ∧ (E < n)]

where n is an auxiliary variable not occurring in P , C, S R, E or Q.

Example: The verification conditions for

[R=X ∧ Q=0]
WHILE Y≤R DO {X=R+Y×Q}[R]

BEGIN R:=R-Y; Q=Q+1 END

[X = R+(Y×Q) ∧ R<Y]

72 Chapter 4. Total Correctness

are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

(iii) X = R+Y×Q ∧ Y≤R ⇒ R≥0

together with the verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
BEGIN R:=R-Y; Q:=Q+1 END

[X=R+(Y×Q) ∧ (R<n)]

which (exercise for the reader) consists of the single condition

(iv)

X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n) ⇒ X = (R-Y)+(Y×(Q+1)) ∧ ((R-Y)<n)

But this isn’t true (take Y=0)! 2

Exercise 50

Explain why one would not expect to be able to prove the verification conditions

of the last example. Strengthen the precondition so that provable verification con-

ditions are generated. 2

A correctly annotated specification of a FOR-command has the form

{P} FOR V :=E1 UNTIL E2 DO {R} C {Q}

FOR-commands

The verification conditions generated from

[P] FOR V :=E1 UNTIL E2 DO {R} C [Q]

are

(i) P ⇒ R[E1/V]

(ii) R[E2+1/V] ⇒ Q

(iii) P ∧ E2 < E1 ⇒ Q

(iv) the verification conditions generated by

[R ∧ E1 ≤ V ∧ V ≤ E2] C [R[V + 1/V]]

(v) the syntactic condition that neither V , nor any variable occurring in E1

or E2, is assigned to inside C.

Example: The verification conditions generated by

4.7. Verification condition generation 73

[X=0 ∧ 1≤M]
FOR N:=1 UNTIL M DO {X=((N-1)×N) DIV 2} X:=X+N

[X = (M×(M+1)) DIV 2]

are

(i) X=0 ∧ 1≤M ⇒ X=((1-1)×1) DIV 2

(ii) X = (((M+1)-1)×(M+1)) DIV 2 ⇒ X = (M×(M+1)) DIV 2

(iii) X=0 ∧ 1≤M ∧ M<1 ⇒ X = (M×(M+1)) DIV 2

(iv) The verification condition generated by

[X = ((N-1)×N) DIV 2 ∧ 1≤N ∧ N≤M]
X:=X+N

[X = (((N+1)-1)×(N+1)) DIV 2]

(v) The syntactic condition that neither N or M is assigned to in X:=X+N.

These verification conditionss are proved in the example on page 57. 2

We leave it as an exercise for the reader to extend the argument given in Sec-

tion 3.5 to a justification of the total correcness verification conditions.

74 Chapter 4. Total Correctness

Chapter 5

Program Refinement

Floyd-Hoare Logic is a method of proving that existing programs meet

their specifications. It can also be used as a basis for ‘refining’ specifi-

cations to programs – i.e. as the basis for a programming methodology.

5.1 Introduction

The task of a programmer can be viewed as taking a specification consisting of a

precondition P and postcondition Q and then coming up with a command C such

that ` [P] C [Q].

Theories of refinement present rules for ‘calculating’ programs C from specifi-

cation P and Q. A key idea, due to Ralph Back [3] of Finland (and subsequently

rediscovered by both Joseph Morris [35] and Carroll Morgan [34]), is to introduce

a new class of programming constructs, called specifications. These play the same

syntactic role as commands, but are not directly executable though they are guar-

anteed to achieve a given postcondition from a given precondition. The resulting

generalized programming language contains pure specifications, pure code and mix-

tures of the two. Such languages are called wide spectrum languages.

The approach taken here1 follows the style of refinement developed by Morgan,

but is founded on Floyd-Hoare logic, rather than on Dijkstra’s theory of weakest

preconditions (see Section 7.6.2). This foundation is a bit more concrete and syn-

tactical than the traditional one: a specification is identified with its set of possible

implementations and refinement is represented as manipulations on sets of ordi-

nary commands. This approach aims to convey the ‘look and feel’ of (Morgan

style) refinement using the notational and conceptual ingredients introduced in the

preceding chapters.

The notation [P, Q] will be used for specifications, and thus:

[P, Q] = { C | ` [P] C [Q] }

The process of refinement will then consist of a sequence of steps that make sys-

tematic design decisions to narrow down the sets of possible implementations until

1The approach to refinement described here is due to Paul Curzon. Mark Staples and Joakim
Von Wright provided some feedback on an early draft, which I have incorporated

75

76 Chapter 5. Program Refinement

a unique implementation is reached. Thus a refinement of a specification S to an

implementation C has the form:

S ⊇ S1 ⊇ S2 · · · ⊇ Sn ⊇ {C}

The initial specification S has the form [P, Q] and each intermediate specifi-

cation Si is obtained from its predecessor S i−1 by the application of a refinement

law.

In the literature S ⊇ S ′ is normally written S v S ′. The use of “⊇” here,

instead of the more abstract “v”, reflects the concrete interpretation of refinement

as the narrowing down of sets of implementations.

5.2 Refinement laws

The refinement laws are derived from the axioms and rules of Floyd-Hoare Logic.

In order to state these laws, the usual notation for commands is extended to sets

of commands as follows (C, C1, C2 etc. range over sets of commands):

C1; · · · ;Cn = { C1; · · · ;Cn | C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }
BEGIN VAR V1; · · · VAR Vn; C END = { BEGIN VAR V1; · · · VAR Vn; C END | C ∈ C }
IF S THEN C = { IF S THEN C | C ∈ C }
IF S THEN C1 ELSE C2 = { IF S THEN C1 ELSE C2 | C1 ∈ C1 ∧ C2 ∈ C2 }

WHILE S DO C = { WHILE S DO C | C ∈ C }

This notation for sets of commands can be viewed as constituting a wide spectrum

language.

Note that such sets of commands are monotonic with respect to refinement

(i.e. inclusion). If C ⊇ C′, C1 ⊇ C′1, . . . , Cn ⊇ C′n then:

C1; · · · ;Cn ⊇ C′1; · · · ;C′n
BEGIN VAR V1; · · · VAR Vn; C END ⊇ BEGIN VAR V1; · · · VAR Vn; C′ END

IF S THEN C ⊇ IF S THEN C ′

IF S THEN C1 ELSE C2 ⊇ IF S THEN C′1 ELSE C′2
WHILE S DO C ⊇ WHILE S DO C ′

This monotonicity shows that a command can be refined by separately refining its

constituents.

The following ‘laws’ follow directly from the definitions above and the axioms

and rules of Floyd-Hoare logic.

5.2. Refinement laws 77

The Skip Law

[P, P] ⊇ {SKIP}

Derivation

C ∈ {SKIP}
⇔ C = tSKIP
⇒ ` [P] C [P] (Skip Axiom)
⇔ C ∈ [P, P] (Definition of [P, P])

The Assignment Law

[P[E/V], P] ⊇ {V := E}

Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ` [P[E/V]] C [P] (Assignment Axiom)
⇔ C ∈ [P[E/V], P] (Definition of [P[E/V], P])

Derived Assignment Law

[P, Q] ⊇ {V :=E}
provided ` P ⇒ Q[E/V]

Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ` [Q[E/V]] C [Q] (Assignment Axiom)
⇒ ` [P] C [Q] (Precondition Strengthening & ` P ⇒ Q[E/V])
⇔ C ∈ [P, Q] (Definition of [P, Q])

Precondition Weakening

[P, Q] ⊇ [R, Q]

provided ` P ⇒ R

Derivation

C ∈ [R, Q]
⇔ ` [R] C [Q] (Definition of [R, Q])
⇒ ` [P] C [Q] (Precondition Strengthening & ` P ⇒ R)
⇔ C ∈ [P, Q] (Definition of [P, Q])

78 Chapter 5. Program Refinement

Postcondition Strengthening

[P, Q] ⊇ [P, R]

provided ` R ⇒ Q

Derivation

C ∈ [P, R]
⇔ ` [P] C [R] (Definition of [R, Q])
⇒ ` [P] C [Q] (Postcondition Weakening & ` R⇒ Q)
⇔ C ∈ [P, Q] (Definition of [P, Q])

The Sequencing Law

[P, Q] ⊇ [P, R] ; [R, Q]

Derivation

C ∈ [P, R] ; [R, Q]
⇔ C ∈ { C1 ; C2 | C1 ∈ [P, R] & C2 ∈ [R, Q]} (Definition of C1 ; C2)
⇔ C ∈ { C1 ; C2 | ` [P] C1 [R] & ` [R] C2 [Q]} (Definition of [P, R] and [R, Q])
⇒ C ∈ { C1 ; C2 | ` [P] C1 ; C2 [Q]} (Sequencing Rule)
⇒ ` [P] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The Block Law

[P, Q] ⊇ BEGIN VAR V ; [P, Q] END

where V does not occur in P or Q

Derivation

C ∈ BEGIN VAR V ; [P, Q] END
⇔ C ∈ {BEGIN VAR V ; C′ END |

C′ ∈ [P, Q]} (Definition of BEGIN VAR V ; C END)
⇔ C ∈ {BEGIN VAR V ; C′ END |

` [P] C′ [Q]} (Definition of [P, Q])
⇒ C ∈ {BEGIN VAR V ; C′ END |

` [P] BEGIN VAR V ; C′ END [Q]} (Block Rule & V not in P or Q)
⇒ ` [P] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The One-armed Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q]

provided ` P ∧ ¬S ⇒ Q

5.3. An example 79

Derivation

C ∈ IF S THEN [P ∧ S, Q]
⇔ C ∈ {IF S THEN C′ |

C′ ∈ [P ∧ S, Q]} (Definition of IF S THEN C)
⇔ C ∈ {IF S THEN C′ |

` [P ∧ S] C′ [Q]} (Definition of [P ∧ S, Q])
⇒ C ∈ {IF S THEN C′ |

` [P] IF S THEN C′ [Q]} (One-armed Conditional Rule & ` P ∧ ¬S ⇒ Q)
⇒ ` [P] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The Two-armed Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q] ELSE [P ∧ ¬S, Q]

Derivation

C ∈ IF S THEN [P∧S, Q] ELSE [P∧¬S, Q]
⇔ C ∈ {IF S THEN C1 ELSE C2 |

C1 ∈ [P∧S, Q] & C2 ∈ [P∧¬S, Q]} (Definition of IF S THEN C1 ELSE C2)
⇔ C ∈ {IF S THEN C1 THEN C2 |

` [P∧S] C1 [Q] & ` [P∧¬S] C2 [Q]} (Definition of [P∧S, Q] & [P∧¬S, Q])
⇒ C ∈ {IF S THEN C1 ELSE C2 |

` [P] IF S THEN C1 ELSE C2 [Q]} (Two-armed Conditional Rule)
⇒ ` [P] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The While Law

[P, P ∧ ¬S] ⊇ WHILE S DO [P ∧ S ∧ (E=n), P ∧ (E<n)]

provided ` P ∧ S ⇒ E ≥ 0

where E is an integer-valued expression and n is an identifier not
occurring in P , S or E.

Derivation

C ∈ WHILE S DO [P ∧ S ∧ (E = n), P ∧ (E < n)]
⇔ C ∈ {WHILE S DO C′ |

C′ ∈ [P ∧ S ∧ (E = n), P ∧ (E < n)]} (Definition of WHILE S DO C)
⇔ C ∈ {WHILE S DO C′ | (Definition of

` [P ∧ S ∧ (E = n)] C′ [P ∧ (E < n)]} [P ∧ S ∧ (E = n), P ∧ (E < n)])
⇒ C ∈ {WHILE S DO C′ |

` [P] WHILE S DO C′ [P ∧ ¬S]} (While Rule & ` P ∧ S ⇒ E ≥ 0)
⇒ ` [P] C [P ∧ ¬S]
⇔ C ∈ [P, Q] (Definition of [P, P ∧ ¬S])

5.3 An example

The notation [P1, P2, P3, · · · , Pn−1, Pn] will be used to abbreviate:

[P1, P2] ; [P2, P3] ; · · · ; [Pn−1, Pn]

The brackets around fully refined specifications of the form {C} will be omitted –

e.g. if C is a set of commands, then R := X ; C abbreviates {R := X} ; C.

80 Chapter 5. Program Refinement

The familiar division program can be ‘calculated’ by the following refinement of

the specification: [Y > 0, X = R+ (Y ×Q) ∧ R ≤ Y]

Let I stand for the invariant X = R+ (Y ×Q). In the refinement that follows,

the comments in curley brackets after the symbol “⊇” indicate the refinement law

used for the step.

[Y > 0, I ∧ R ≤ Y]
⊇ (Sequencing)
[Y > 0, R = X ∧ Y > 0, I ∧ R ≤ Y]
⊇ (Assignment)
R := X ; [R = X ∧ Y > 0, I ∧ R ≤ Y]
⊇ (Sequencing)
R := X ; [R = X ∧ Y > 0, R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]
⊇ (Assignment)
R := X ; Q := 0 ; [R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]
⊇ (Precondition Weakening)
R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ R ≤ Y]
⊇ (Postcondition Strengthening)
R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ Y > 0 ¬(Y ≤ R)]
⊇ (While)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n]
[I ∧ Y > 0 ∧ R < n]

⊇ (Sequencing)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n]
[X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n]
[I ∧ Y > 0 ∧ R < n]

⊇ (Derived Assignment)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n]
[X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n]
R := R− Y

⊇ (Derived Assignment)
R := X ; Q := 0 ;

WHILE Y ≤ R DO Q := Q+ 1 ; R := R− Y

5.4 General remarks

The ‘Morgan style of refinement’ illustrated here provides laws for systematically

introducing structure with the aim of eventually getting rid of specification state-

ments. This style has been accused of being “programming in the microscopic”.

The ‘Back style’ is less rigidly top-down and provides a more flexible (but maybe

also more chaotic) program development framework. It also emphasises and sup-

ports transformations that distribute control (e.g. going from sequential to parallel

programs). General algebraic laws not specifically involving specification statements

are used, for example:

C = IF S THEN C ELSE C

which can be used both to introduce and eliminate conditionals.

Both styles of refinement include large-scale transformations (data refinement

and superposition) where a refinement step actually is a much larger change than

a simple IF or WHILE introduction. However, this will not be covered here.

Chapter 6

Higher Order Logic

Higher order logic generalises first order logic by supporting λ-notation

and allowing variables to range over functions and predicates. To pre-

serve consistency it is typed. Various programming logics can be embed-

ded in higher order logic.

Higher order predicate calculus (also called “higher order logic” and “simple type

theory”) uses the familiar notation of first order logic.

• “P (x)” means “x has property P”,

• “¬t” means “not t”,

• “t1 ∧ t2” means “t1 and t2”,

• “t1 ∨ t2” means “t1 or t2”,

• “t1 ⇒ t2” means “t1 implies t2”,

• “∀x. t[x]” means “for all x it is the case that t[x]”,

• “∃x. t[x]” means “for some x it is the case that t[x]”,

• “∃!x. t[x]” means “there is a unique x such that t[x]”.

The difference is that in higher order logic, statements (or formulae) are regarded

as boolean valued terms, i.e. terms whose value is one of the two truth values (or

booleans) T or F. In the phrases just listed, t, t1 and t2 stand for arbitrary boolean

terms, and t[x] stands for some boolean term containing the variable x.

The structure of terms in higher order logic is more general that in the first

order case. There are four kinds of terms; these will be explained in detail later,

but here is a quick overview:

1. Variables. These are sequences of letters or digits beginning with a letter.

For example: x, y, P .

2. Constants. Constants stand for fixed values. They will be distinguished from

variables by being either mathematical characters or strings in sans serif font.

Examples of constants are: T, F (the truth-values), 0, 1, 2, . . . (numbers), +,

×, (arithmetical operators) <, ≤ (arithmetical predicates).

81

82 Chapter 6. Higher Order Logic

3. Function applications. These have the general form t1 t2 where t1 and

t2 are terms, an example is P 0. Brackets can be inserted around terms to

increase readability or to enforce grouping, thus P 0 is equivalent to P (0).

Binary function constants can be infixed. Thus one can write t1 + t2 instead

of + t1 t2.

4. Lambda-terms. These denote functions and have the form λx. t (where x

is a variable and t a term). For example, λn. n + 1 denotes the successor

function.

The various kinds of statements are just terms in higher order logic. For example,

¬t is just the application of the constant ¬ to the term t and t1 ⇒ t2 is just the

infixed application of the binary constant ⇒ to argument terms t1 and t2.

The representation of quantifiers as terms is less straightforward, because of

bound variables. In higher order logic, there is only a single variable binding mech-

anism: λ-abstraction. The quantifiers ∀ and ∃ are regarded as constants and the

quantifications ∀x. t and ∃x. t are ‘user friendly syntax’ for the terms ∀(λx. t) and

∃(λx. t) . Such constants are called binders.

Example: ∀n. P (n) ⇒ P (n + 1) is written instead of ∀(λn. ⇒(P (n))(P (+ n 1)))

2

Higher order logic generalizes first order logic by allowing higher order variables

— i.e. variables ranging over functions and predicates. For example, the induction

axiom for natural numbers can be written as:

∀P. P (0) ∧ (∀n. P (n)⇒ P (n+ 1))⇒ ∀n. P (n)

and the legitimacy of simple recursive definitions (the Peano-Lawvere Axiom [30])

can be expressed by:

∀n0. ∀f. ∃!s. (s(0) = n0) ∧ (∀n. s(n+ 1) = f(s(n)))

Sentences like these are not allowed in first order logic: in the first example above

P ranges over predicates; in the second example f and s range over functions.

An example that will be central to the next chapter is the representation of

partial correctness specifications in higher order logic. This is done by defining a

predicate (i.e. a function whose result is a truth value) Spec by:

Spec(p, c, q) = ∀s1 s2. p s1 ∧ c(s1, s2)⇒ q s2

Spec is a predicate on triples (p, c, q) where p and q are unary predicates and c is a

binary predicate. To represent command sequencing we can define a constant Seq

by:

Seq(c1, c2)(s1, s2) = ∃s. c1(s1, s) ∧ c2(s, s2)

6.1. Terms 83

The sequencing rule in Hoare logic can be stated directly in higher order logic as:

` ∀p q r c1 c2. Spec(p, c1, q) ∧ Spec(q, c2, r)⇒ Spec(p,Seq(c1, c2), r)

These examples, which will be fully explained in the next chapter, make essential

use of higher order variables; they can’t be expressed in first-order logic.

6.1 Terms

The four kinds of terms in the higher order logic are variables, constants, applica-

tions (of a function to an argument) and abstractions (also called λ-terms). These

are described in detail below.

6.1.1 Variables and constants

Variables and constants stand for values. Variables will normally be strings of

letters and digits starting with a letter. They will be written in italics. Constants

can either be strings of letters and digits starting with a letter but they will be

written in sans serif font. In addition, there are some special non-alphanumeric

symbols for the constants representing logical operators; these include: the equals

sign (=), the equivalence symbol (≡), the negation symbol (¬), the conjunction

symbol (∧), the disjunction symbol (∨), the implication symbol (⇒), the universal

quantifier (∀), the existential quantifier (∃), the unique existence quantifier (∃!) and

Hilbert’s epsilon symbol (ε). Other allowed constant symbols are the pairing symbol

(comma: ,), the numerals 0, 1, 2 etc., the arithmetic functions +, −, × and /, and

the arithmetic relations <, >, ≤ and ≥.

6.1.2 Function applications

Terms of the form t1(t2) are called applications or combinations. The subterm t1

is called the operator (or rator) and the term t2 is called the operand (or rand or

argument). The result of such a function application can itself be a function and

thus terms like (t1(t2))(t3) are allowed. Functions that take functions as arguments

or return functions as results are called higher order .

To save writing brackets, function applications can be written as f x instead of

f(x). More generally we adopt the usual convention that t1 t2 t3 · · · tn abbreviates

(· · · ((t1 t2) t3) · · · tn) i.e. application associates to the left.

6.1.3 Lambda-terms

The version of higher order logic presented here1 provides lambda-terms (also called

λ-terms or abstractions) for denoting functions. Such a term has the form λx. t

1The version of higher order logic presented here is based on ‘Simple Type Theory’ which was
invented by the logician Alonzo Church in 1940 [8].

84 Chapter 6. Higher Order Logic

(where t is a term) and denotes the function f defined by:

f(x) = t

For example, λn. cos(sin(n)) denotes the function f such that:

f(n) = cos(sin(n))

thus: f(1) = cos(sin(1)), f(2) = cos(sin(2)) etc. The variable x and term t are called

respectively the bound variable and body of the λ-expression λx. t. An occurrence

of the bound variable in the body is called a bound occurrence. If an occurrence is

not bound it is called free.

6.2 Types

The increased expressive power gained by allowing higher order variables is danger-

ous. Consider the predicate P defined by:

P x = ¬(x x)

from this definition it follows that:

P P = ¬(P P)

which is a version of Russell’s paradox. Russell invented a method for preventing

such inconsistencies based on the use of types [18]. The formulation used here is a

simplification of Russell’s type system due to Church [8] with extensions developed

by Milner [15]. It is very similar to the type system of the ML programming

language.

Types are expressions that denote sets of values, they are either atomic or com-

pound . Examples of atomic types are:

bool, ind, num, real

these denote the sets of booleans, individuals, natural numbers and real numbers

respectively. Compound types are built from atomic types (or other compound

types) using type operators. For example, if σ, σ1 and σ2 are types then so are:

σ list, σ1→σ2, σ1×σ2

where list is a unary type operator and → and × are an infixed binary type oper-

ators. The type σ list denotes the set of lists of values of type σ, the type σ1→σ2

denotes the set of functions with domain denoted by σ1 and range denoted by σ2

and the type σ1×σ2 denotes the Cartesian product type of pairs whose first compo-

nent has type σ1 and second component has type σ2 (see Section 6.3.3). In general,

compound types are expressions of the form:

(σ1, . . . , σn)op

6.2. Types 85

where op is a type operator and σ1, . . . , σn are types. If the operator has only one

argument then the brackets can be omitted (hence σ list); the types σ1→σ2 and

σ1×σ2 are ad hoc abbreviations for (σ1, σ2)fun and (σ1, σ2)prod, respectively. We

will use lower case slanted identifiers for particular types, and greek letters (mostly

σ) to range over arbitrary types.

Terms of higher order logic must be well-typed in the sense that each subterm

can be assigned a type ‘in a consistent way’. More precisely, it must be possible to

assign a type to each subterm such that both 1 and 2 below hold.

1. For every subterm of the form t1 t2 there are types σ and σ′ such that:

(a) t1 is assigned σ′→σ

(b) t2 is assigned σ′

(c) t1 t2 is assigned the type σ.

2. Every subterm of the form λx. t is assigned a type σ1→σ2 where:

(a) x is assigned σ1

(b) t is assigned σ2.

Variables with the same name can be assigned different types, but then they are

regarded as different variables.

Writing t:σ indicates that a term t has type σ. Thus x:σ1 is the same variable

as x:σ2 if and only if σ1 = σ2. In Church’s original notation t:σ would be written

tσ.

In some formulations of higher-order logic, the types of variables have to be writ-

ten down explicitly. For example, λx. cos(sin(x)) would not be allowed in Church’s

system, instead one would have to write:

λxreal. cosreal→real(sinreal→real(xreal))

We allow the types of variables to be omitted if they can be inferred from the

context. There is an algorithm, due to Robin Milner [33], for doing such type

inference.

We adopt the standard conventions that σ1→σ2→σ3→ · · · σn→σ is an abbre-

viation for σ1→(σ2→(σ3→ · · · (σn→σ) · · ·)) i.e. → associates to the right. This

convention blends well with the left associativity of function application, because

if f has type σ1→ · · · σn→σ and t1, . . . , tn have types σ1, . . . , σn respectively,

then f t1 · · · tn is a well-typed term of type σ. We also assume × is more tightly

binding than→; for example, state× state→bool means (state× state)→bool. The

notation λx1 x2 · · · xn. t abbreviates λx1. λx2. · · · λxn. t. The scope of the “.”

after a λ extends as far to the right as possible. Thus, for example, λb. b = λx. T

means λb. (b = (λx. T)) not (λb. b) = (λx. T).

86 Chapter 6. Higher Order Logic

6.2.1 Type variables and polymorphism

Consider the function twice defined by:

twice = λf. λx. f(f(x))

If f is a function then twice(f), the result of applying twice to f , is the function

λx. f(f(x)); twice is thus a function-returning function, i.e. it is higher order. For

example, if sin is a trigonometric function with type real→real, then twice(sin) is

λx. sin(sin(x)) which is the function taking the sin of the sin of its argument, a func-

tion of type real→real, and if not is a boolean function with type bool→bool, then

twice(not) is λx. not(not(x)) which is the function taking the double negation of its

argument, a function of type bool→bool. What then is the type of the function

twice? Since twice(sin) has type real→real it would appear that twice has the type

(real→real)→(real→real). However, since twice(not) has type bool→bool it would

also appear that twice has the type (bool→bool)→(bool→bool). Thus twice would

appear to have two different types. In Church’s Simple Type Theory this would

not be allowed and we would have to define two functions, twice(real→real)→(real→real)

and twice(bool→bool)→(bool→bool) say. In the version of higher order used here, type

variables are used to overcome this messiness; for example, if α is a type variable

then twice can be given the type (α→α)→(α→α) and then it behaves as though

it has all instances of this that can be obtained by replacing α by a type. Types

containing type variables are called polymorphic, ones not containing variables are

monomorphic. We shall call a term polymorphic or monomorphic if its type is poly-

morphic or monomorphic respectively. We will use α, β, γ etc. for type variables.

This use of type variables is an extension of Church’s simple type theory. It is

due to Roben Milner and was developed by him for a special purpose logic called

PPLAMBDA[15].

An instance of a type σ is a type obtained by replacing zero or more type

variables in σ by types. Here are some instances of (α→α)→(α→α):

(real→real)→(real→real)
(bool→bool)→(bool→bool)

((α→bool)→(α→bool))→((α→bool)→(α→bool))

In these examples α has been replaced by real, bool and α→bool respectively. The

only instances of monomorphic types are themselves.

All constants are assumed to have a fixed type. If this type is polymorphic then

for the purposes of type checking the constant behaves as though it is assigned

every instance of the type. For example, if twice had type (α→α)→(α→α), then

the terms twice(sin) and twice(not) would be well-typed.

6.3 Special Syntactic Forms

Certain applications are conventionally written in special ways, for example:

6.3. Special Syntactic Forms 87

• + t1 t2 is written t1 + t2

• , t1 t2 is written (t1, t2)

• ∀(λx. t) is written ∀x. t

Constants can have a special syntactic status to support such forms. For exam-

ple, + and , are examples of infixes and ∀ is an example of a binder . Some other

ad hoc syntactic forms are also allowed, these are explained below.

6.3.1 Infixes

Constants with types of the form σ1→σ2→σ3 can be infixes. If f is an infixed

constant then applications are written as t1 f t2 rather than as f t1 t2. Standard

examples of infixes are the arithmetic functions +, × etc. Whether a constant is an

infix or not has no logical significance, it is merely syntactic.

Examples of infixes are the following constants:

∧ : bool→bool→bool (Conjunction - i.e. “and”)

∨ : bool→bool→bool (Disjunction - i.e. “or”)

⇒ : bool→bool→bool (Implication - i.e. “implies”)

≡ : bool→bool→bool (Equivalence - i.e. “if and only if”)

Equality is also an infixed constant; it is polymorphic:

= : α→α→bool

Equivalence (≡) is equality (=) restricted to booleans. The constants ∧, ∨, ⇒, ≡
and = are all infixes.

6.3.2 Binders

It is sometimes more readable to write f x. t instead of f(λx. t). For example, the

quantifiers ∀ and ∃ are polymorphic constants:

∀ : (α→bool)→bool

∃ : (α→bool)→bool

The idea is that if P : σ→bool, then ∀(P) is true if P (x) is true for all x and ∃(P)

is true if P (x) is true for some x. Instead of writing ∀(λx. t) and ∃(λx. t) it is nice

to be able to use the more conventional forms ∀x. t and ∃x. t.
Any constant f with a type of the form (σ1→σ2)→σ3 can be a binder , so that

instead of writing:

f(λx1. f(λx2. · · · f(λxn. t) · · ·))

one writes:

f x1 · · · xn. t

88 Chapter 6. Higher Order Logic

As with infixes, the binder status of a constant is purely syntactic.

Recall the statement of mathematical induction:

∀P. P (0) ∧ (∀n. P (n)⇒ P (n+ 1))⇒ ∀n. P (n)

This is a term of type bool. Without using infix and binder notation it would be

much less readable, namely:

∀(λP. ⇒(∧(P 0)(∀(λn. ⇒(P n)(P (+ n 1)))))(∀(λn. Pn)))

The quantifiers ∀ and ∃ need not be primitive; they can be defined in terms of

more primitive notions. We will not, however, go into this here.

6.3.3 Pairs and tuples

A function of n arguments can be represented as a higher order function of 1 argu-

ment that returns a function of n-1 arguments. Thus λm. λn. m2 + n2 represents

the 2 argument function that sums the squares of its arguments. Functions of this

form are called curried . An alternative way of representing multiple argument func-

tions is as single argument functions taking tuples as arguments. To handle tuples

a binary type operator prod is used. If t1:σ1 and t2:σ2 then the term (t1, t2) has

type (σ1, σ2)prod and denotes the pair of values. The type (σ1, σ2)prod can also be

written as σ1×σ2. Another representation of the sum-squares function would be as

a constant, sumsq say, of type (num×num)→num defined by:

sumsq(m,n) = m2 + n2

A term of the form (t1, t2) is equivalent to the term , t1 t2 where “,” is a

polymorphic infixed constant of type α→β→(α×β). Instead of having tuples as

primitive, they will be treated as iterated pairs. Thus the term:

(t1, t2, . . . , tn−1, tn)

is an abbreviation for:

(t1, (t2, . . . , (tn−1, tn) . . .))

i.e. “,” associates to the right. To match this, the infixed type operator × also

associates to the right so that if t1:σ1, . . ., tn:σn then:

(t1, . . . , tn) : σ1× · · · ×σn

The type operator prod can be defined in terms of fun and thus pairing need

not be primitive. We shall not go into this here.

6.3. Special Syntactic Forms 89

6.3.4 Lists

To represent lists, types of the form σ list are used, together with constants Nil and

Cons of types α list and α→(α list)→(α list) respectively. A term with type σ list

denotes a list of values all of type σ. Nil is the empty list; [] is an alternative form of

Nil and [t1; · · · ; tn] as an alternative form for Cons t1(Cons t2 · · · (Cons tn Nil) · · ·)).
The difference between lists and tuples is:

1. Different lists of a given type can contain different numbers of elements, but

all tuples of a given type contain exactly the same numbers of elements.

2. The elements of a list must all have the same type but elements of tuples can

have different types.

6.3.5 Conditionals

The constant Cond is defined so that Cond t t1 t2 means “if t then t1 else t2”. The

special syntax (t → t1 | t2) is provided for such terms. The original conditional

notation due to McCarthy used “,” instead of “|”.

6.3.6 Hilbert’s ε-operator

If t[x] is a boolean term containing a free variable x of type σ, then the Hilbert-term

εx. t[x] denotes some value of type σ, a say, such that t[a] is true. For example,

the term εn. n < 10 denotes some unspecified number less than 10 and the term

εn. (n2 = 25) ∧ (n ≥ 0) denotes 5.

If there is no a of type σ such that t[a] is true then εx. t[x] denotes a fixed

but unspecified value of type σ. For example, εn. ¬(n = n) denotes an unspecified

number. The logical axiom

` ∀P x. P x⇒ P (ε P)

which is called SELECT AX, defines the meaning of ε. This axiom is equivalent to:

` ∀P. (∃x. P x)⇒ P (ε P)

It must be admitted that the ε-operator looks rather suspicious. For a thorough

discussion of it see [26]. It is useful for naming things one knows to exist but have

no name. For example, the Peano-Lawvere axiom asserts that given a number n0

and a function f :num→num, there exists a unique sequence s defined recursively

by:

(s(0) = n0) ∧ (∀n. s(n+ 1) = f(s(n)))

Using the ε-operator we can define a function, Rec say, that returns s when given

the pair (n0, f) as an argument:

Rec(n0, f) = εs. (s(0) = n0) ∧ (∀n. s(n+ 1) = f(s(n)))

90 Chapter 6. Higher Order Logic

Rec(n0, f) denotes the unique sequence whose existence is asserted by the Peano-

Lawvere Axiom. It follows from this axiom that:

(Rec(n0, f)0 = n0) ∧ (∀n. Rec(n0, f)(n+ 1) = f(Rec(n0, f)n))

Many things that are normally primitive can be defined using the ε-operator.

For example, the conditional term Cond t t1 t2 (meaning “if t then t1 else t2”) can

be defined by:

Cond t t1 t2 = εx. ((t = T)⇒ (x = t1)) ∧ ((t = F)⇒ (x = t2))

One can use the ε-operator to simulate λ-abstraction: if the variable f does

not occur in the term t, then the function λx. t is equivalent to εf. ∀x. f(x) = t

(“the function f such that f(x) = t for all x”). This idea can be used to create

functional abstractions that cannot be expressed with simple λ-terms. For example,

the factorial function is denoted by:

εf. ∀n. (f(0) = 1) ∧ (f(n+ 1) = (n+ 1)× f(n))

Terms like this can be used to simulate the kind of pattern matching mechanisms

found in programming languages like ML.

The inclusion of ε-terms in the logic ‘builds in’ the Axiom of Choice [18]. In Set

Theory, the Axiom of Choice states that if S is a family of sets then there exists a

function, Choose say, such that for each non-empty X ∈ S we have Choose(X) ∈ X.

As sets are not primitive in higher order logic, we must reformulate Choose to act on

the characteristic functions of sets rather than sets themselves. The characteristic

function of a set X is the function fX with range {T,F} defined by fX(x) = T if

and only if x ∈ X. If P is any function with range {T,F}, we call P non-empty

if for some x it is the case that P (x) = T (so fX is non-empty if and only if X

is non-empty). The higher order logic version of the Axiom of Choice asserts that

there exists a function, Select say, such that if P is a non-empty function with range

{T,F} then P (Select(P)) = T. Intuitively Select P is just Choose{x | P x = T}.
Hilbert’s ε-operator is a binder that denotes Select. More precisely ε is a binder

with type (α→bool)→α which is interpreted so that if P has type σ→bool then:

• ε(P) denotes some fixed (but unknown) value x such that P (x) = T if such a

value exists;

• if no such value exists (i.e. P (x) = F for all x) then ε(P) denotes some

unspecified value in the set denoted by σ.

Having ε-terms forces every type to be non-empty because the term εx:σ.T

always denotes a member of σ.

6.4. Definitions 91

6.4 Definitions

Definitions are axioms of the form ` c = t where c is a new constant and t is a

closed term2 (i.e. a term without any free variables) that doesn’t contain c. Such

a definition just introduces the constant c as an abbreviation for the term t. The

requirement that c may not occur in t prevents definitions from being recursive,

this is to rule out inconsistent ‘definitions’ like ` c = c + 1. A function definition:

` f = λx1 · · · xn. t

can be written as:

` f x1 · · · xn = t

For example, the definition of Seq given in Section 7.3 below is:

` Seq = λ(C1, C2). λ(s1, s2). ∃s. C1(s1, s) ∧ C2(s, s2)

which is logically equivalent to:

` Seq(C1, C2)(s1, s2) = ∃s. C1(s1, s) ∧ C2(s, s2)

Definitions have the property that adding a new definition to the set of existing

ones cannot introduce any new inconsistencies. As was shown by Russell and White-

head [18], with suitable definitions, all of classical mathematics can be constructed

from logic together with the assumption that there are infinitely many individuals

(the Axiom of Infinity). It is thus not necessary to postulate axioms other than

definitions.

6.5 Peano’s axioms

The natural numbers are defined by introducing a type num and constants 0 : num

and Suc : num→num and then postulating Peano’s Axioms3. These axioms are:

1. There is a number 0.

2. There is a function Suc called the successor function such that if n is a number

then Suc n is a number.

3. 0 is not the successor of any number.

4. If two numbers have the same successor then they are equal.

5. If a property holds of 0 and if whenever it holds of a number then it also holds

of the successor of the number, then the property holds of all numbers. This

postulate is called Mathematical Induction.

2It is also necessary to require that all type variables occurring in the types of subterms of t
also occur in the type of c, but this technicality is glossed over here.

3In fact, the type num and constants 0 and Suc can be defined in higher order logic and Peano’s
axioms then proved as theorems (given the Axiom of Infinity). We will not go into this here; in
particular, we will not describe how types are defined.

92 Chapter 6. Higher Order Logic

The first two postulates hold because 0:num and Suc:num→num. The following

axiom formalizes the third postulate:

` ∀m. ¬(Suc m = 0)

The forth postulate is:

` ∀m n. (Suc m = Suc n)⇒ (m = n)

The fifth postulate, Mathematical Induction, is higher order:

` ∀P :num→bool. P 0 ∧ (∀m. P m⇒ P (Suc m))⇒ ∀m. P m

The numerals 1, 2, 3 etc. are defined by:

` 1 = Suc 0

` 2 = Suc(Suc 0)

` 3 = Suc(Suc(Suc 0))

•
•
•

Because Suc is one-to-one these denote an infinite set of distinct values of type num.

6.5.1 Primitive recursion

The usual theorems of arithmetic can be derived from Peano’s postulates. The first

step in doing this is to provide a mechanism for defining functions recursively. For

example, the usual ‘definition’ of + is:

` 0 +m = m

` (Suc m) + n = Suc(m+ n)

Unfortunately this isn’t a definition. In order to convert such recursion equations

into definitions we need the Primitive Recursion Theorem:

` ∀x:α. ∀f :α→num→α. ∃fun:num→α.
(fun 0 = x) ∧
(∀m. fun(Suc m) = f(fun m)m)

The proof of this theorem from Peano’s postulates is quite complicated and is

omitted. To show that the Primitive Recursion Theorem solves the problem of

defining + one specializes it by taking x to be λn. n and f to be λf ′ x′. λn. Suc(f ′ n),

this yields:

` ∃fun. (fun 0 = (λn. n)) ∧
(∀m. fun(Suc m) = (λf ′ x′. λn. Suc(f ′ n)) (fun m) m)

6.5. Peano’s axioms 93

which is equivalent to:

` ∃fun. (fun 0 n = n) ∧
(fun(Suc m)n = Suc(fun m n))

Thus, if we define + by:

` + = εfun. ∀m n. (fun 0 n = n) ∧
(fun(Suc m)n = Suc(fun m n))

then it follows from the axiom for the ε-operator that:

` 0 + n = n

` (Suc m) + n = Suc(m+ n)

as desired.

The method just used to define + generalizes to any primitive recursive defini-

tion. Such a definition has the form:

fun 0 x1 · · · xn = f1 x1 · · · xn
fun (Suc m) x1 · · · xn = f2 (fun m x1 · · · xn) m x1 · · · xn

where fun is the function being defined and f1 and f2 are given functions. To define

a fun satisfying these equations we first define:

` Prim Rec = λx f. εfun. (fun 0 = x) ∧
(∀m. fun(Suc m) = f(fun m)m)

It then follows by the axiom for the ε-operator and the Primitive Recursion Theorem

that:

` Prim Rec x f 0 = x

` Prim Rec x f (Suc m) = f (Prim Rec x f m) m

A function fun satisfying the primitive recursive equations above can thus be de-

fined by:

` fun = Prim Rec f1 (λf m x1 · · · xn. f2 (f x1 · · · xn) m x1 · · · xn)

An example of a primitive recursion in this form is the definition of +:

` + = Prim Rec (λx1. x1) (λf m x1. Suc(f x1))

6.5.2 Arithmetic

Standard arithmetic functions and relations can easily be defined. These include

the primitive recursive infixes +, −, × and > which are defined:

` (0 + n = n) ∧ ((Suc m) + n = Suc(m+ n))

94 Chapter 6. Higher Order Logic

` (0− n = 0) ∧ ((Suc m)− n = ((m < n)→ 0 | Suc(m− n)))

` (0× n = 0) ∧ ((Suc m)× n = (m× n) + n)

` (0 > n = F) ∧ ((Suc m) > n = (m = n) ∨ (m > n))

The division function is an infix / defined by:

` m/n = εx. m = n× x

This satisfies:

∃x. m = n× x ` m = n× (m/n)

The arithmetic relation > is defined by primitive recursion above4. The other

relations are defined without recursion by:

` m < n = (n > m)

` m ≤ n = (m < n) ∨ (m = n)

` m ≥ n = (m > n) ∨ (m = n)

The various laws of arithmetic can be deduced from these definitions, together

with Peano’s axioms and axioms and rules of inference of predicate calculus.

6.5.3 Lists

Values of type σ list are finite lists of values of type σ. The two standard list

processing functions:

Nil : α list

Cons : α→(α list)→(α list)

satisfy the the following primitive recursion theorem for lists:

` ∀x:β. ∀f :β→α→(α list)→β. ∃!fun:(α list)→β.
(fun Nil = x) ∧
(∀h t. fun(Cons h t) = f(fun t)h t)

This theorem, which can be proved from suitable definitions of Cons, Nil and the

type operator list (not given here), serves as the only ‘axiom’ for lists. It can be

used to define the additional list processing functions:

Hd : (α list)→α
Tl : (α list)→(α list)

Null : (α list)→bool

4In fact, in the formal development of numbers, < is usually defined using a higher order trick
before primitive recusion has been established.

6.6. Semantics 95

The definitions of these functions (which are left as an exercise for the reader) ensure

that they have the usual properties, namely:

` Null Nil

` ∀x l. ¬(Null(Cons x l))

` ∀x l. Hd(Cons x l) = x

` ∀x l. Tl(Cons x l) = l

` ∀l. ¬(Null l)⇒ Cons(Hd l)(Tl l) = l

In addition we want lists to have the following property, which is analogous to

induction for numbers:

` ∀P. (P Nil) ∧ (∀l. (P l)⇒ ∀x. P (Cons x l))⇒ ∀l. P l

This property follows directly from the uniqueness part of the primitive recursion

theorem for lists given above.

The following alternative notation for lists is allowed: the empty list Nil can

be written as [] and a list of the form Cons t1(Cons t2 · · · (Cons tn Nil) · · ·) can be

written as [t1; · · · ; tn].

6.6 Semantics

In this section we give a very informal sketch of the intended set-theoretic semantics

of higher order logic.

The essential idea is that types denote sets and terms denote members of these

sets. Only well-typed terms are considered meaningful. If term t has type σ then t

should denote a member of the set denoted by σ.

The meaning of a type depends on the interpretation of the type variables (as

sets) that it contains. A type σ containing type variables α1, . . . , αm denotes a

function from m-tuples of sets to sets, such a function is not itself a set but is a

class. For example, the type α→α denotes the ‘class function’ that maps a set X

to the set of functions from X to X (i.e. α→α denotes X 7→ {f | f : X→X}).
Polymorphic constants are interpreted as functions of the interpretations of the

type variables in their type. For example, the standard meaning of the constant

I:α→α is the function that maps a set X (the interpretation of α) to the identity

function on X.

The meaning of a term depends on the interpretation of the constants, free

variables and type variables in it. The interpretation of a term t with type variables

α1, . . . , αm and free variables x1:σ1, . . . , xn:σn is a function from m+n-tuples of

sets to sets. More specifically, it is a function from tuples (X1, . . . , Xm, v1, . . . , vn)

where each Xi is a set and each vi is a member of the interpretation of σi (where

σi is interpreted with respect to the interpretation of α1, . . . , αm as X1, . . . , Xm).

For example, the interpretation of (λx:α. x) y with respect to the tuple (X, v) is

96 Chapter 6. Higher Order Logic

v, where X is the interpretation of α and v ∈ X is the interpretation of y (i.e. the

term (λx:α. x) y denotes (X, v) 7→ v).

Type variables are regarded as implicitly universally quantified at the outermost

level. Thus a theorem ` (λx:α. x) y = y asserts that with respect to every

interpretation of α as a (non-empty) set X the interpretation of λx:α. x is a function

which when applied to the interpretation, v say, of y yields v.

Chapter 7

Deriving Floyd-Hoare Logic

It is shown how Floyd-Hoare logic can be derived in higher order logic.

This involves (i) defining the meaning of commands with suitable se-

mantic definitions, (ii) regarding correctness specifications as notations

for certain statements in higher order logic, and (iii) showing that these

statements obey the laws of Floyd-Hoare logic. A number of alternative

program specification methods are briefly discussed.

7.1 Semantic embedding

Specialized languages and logics can often be represented in higher order logic by

the method of semantic embedding. To illustrate this consider the propositional

language:

wff ::= True | N wff | C wff wff | D wff wff

One approach to embedding this little language, called deep embedding, is to

represent wff s inside the host logic (higher order logic in this example) by values

of some type, wff say, and then define in the host logic a semantic function,M say,

by recursion:

M(True) = T
M(N w) = ¬M(w)
M(C w1 w2) =M(w1) ∧M(w2)
M(D w1 w2) =M(w1) ∨M(w2)

Here M is a constant of higher order logic of type wff→bool.

Another approach, called shallow embedding, is to set up notational conventions

for translating wff s into host logic terms. Suppose [[w]] is the translation of w into

higher order logic. The operation w 7→ [[w]] is not defined ‘inside’ the host logic, but

corresponds to an informal set of ‘parsing and pretty-printing’ conventions. Let ;

mean “is translated by notational conventions to”, then with shallow embedding:

[[True]] ; "T "

[[N w]] ; "¬"_ [[w]]
[[C w1 w2]] ; [[w1]] _ "∧"_ [[w2]]
[[D w1 w2]] ; [[w1]] _ "∨"_ [[w2]]

97

98 Chapter 7. Deriving Floyd-Hoare Logic

Deep and shallow embedding are really two ends of a spectrum. At intermediate

points of this spectrum some aspects of the semantics would be formalized inside

the host logic and others as informal notational conventions.

The advantage of deep embedding is that theorems about the embedded language

can be proved. For example:

∀w1 w2 ∈ wff .M(Cw1w2) =M(NDNw1Nw2)

It formalizes more of the embedding, but also requires a host logic expressive enough

to accomodate this formalization.

With shallow embedding only theorems in the embedded language are provable.

In the example above, quantification over wff s is not expressible. There is less in

the logic, and hence the embedding is less demanding on it and so it is often easier

to support complex notations.

In the rest of this chapter, shallow embeddings of Hoare specifications will be

described, together with an outline of how the axioms and rules of Floyd-Hoare

logic can be derived.

7.2 A simple imperative programming language

We will only consider a subset of our little programming language; in particular,

FOR-commands and arrays are omitted. Instead of having separate one and two-

armed conditionals, we will instead just have two-armed conditionals togther with a

SKIP-command. The syntax of this subset is specified by the BNF given below. In

this specification, the variable N ranges over the numerals 0, 1, 2 etc, the variable

V ranges over program variables1 X, Y , Z etc, the variables E, E1, E2 etc. range

over integer expressions, the variables B, B1, B2 etc. range over boolean expressions

and the variables C, C1, C2 etc. range over commands.

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

B ::= E1=E2 | E1 ≤ E2 | . . .

C ::= SKIP

| V := E
| C1 ; C2

| IF B THEN C1 ELSE C2

| WHILE B DO C

A formal semantics of {P} C {Q} in higher order logic will be given later.

1To distinguish program variables from logical variables, the convention is adopted here that
the former are upper case and the latter are lower case. The need for such a convention is explained
in Section 7.3.

7.2. A simple imperative programming language 99

7.2.1 Axioms and rules of Hoare logic

Here are the axioms and rules of Floyd-Hoare logic for the language used in this

chapter. These are minor variants of the ones given earlier. We write ` {P} C {Q}
if {P} C {Q} is either an instance of one of the axiom schemes A1 or A2 below,

or can be deduced by a sequence of applications of the rules R1, R2, R3, R4 or R5

below from such instances. We write ` P , where P is a formula of predicate logic,

if P can be deduced from the laws of logic and arithmetic.

If ` P , where P is a formula of predicate calculus or arithmetic, then we say

‘ ` P is a theorem of pure logic’; if ` {P} C {Q} we say ‘ ` {P} C {Q} is a

theorem of Hoare logic’.

A1: the SKIP-axiom. For any formula P :

` {P} SKIP {P}

A2: the assignment-axiom. For any formula P , program variable V and integer

expression E:

` {P[E/V]} V := E {P}

where P[E/V] denotes the result of substituting E for all free occurrences of V in

P (and free variables are renamed, if necessary, to avoid capture).

Rules R1 to R5 below are stated in standard notation: the hypotheses of the

rule above a horizontal line and the conclusion below it. For example, R1 states

that if ` P ′ ⇒ P is a theorem of pure logic and ` {P} C {Q} is a theorem of

Hoare logic, then ` {P ′} C {Q} can be deduced by R1.

R1: the rule of precondition strengthening. For any formulae P , P ′ and Q,

and command C:

` P ′ ⇒ P ` {P} C {Q}
` {P ′} C {Q}

R2: the rule of postcondition weakening. For any formulae P , Q and Q′, and

command C:

` {P} C {Q} ` Q⇒ Q′

` {P} C {Q′}

Notice that in R1 and R2, one hypothesis is a theorem of ordinary logic whereas

the other hypothesis is a theorem of Hoare logic. This shows that proofs in Hoare

logic may require subproofs in pure logic; more will be said about the implications

of this later.

100 Chapter 7. Deriving Floyd-Hoare Logic

R3: the sequencing rule. For any formulae P , Q and R, and commands C1 and

C2:

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1; C2 {R}

R4: the IF-rule. For any formulae P , Q and B, and commands C1 and C2:

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} IF B THEN C1 ELSE C2 {Q}

Notice that in this rule (and also in R5 below) it is assumed that B is both a

boolean expression of the programming language and a formula of predicate logic.

We shall only assume that the boolean expressions of the language are a subset of

those in predicate logic. This assumption is reasonable since we are the designers of

our example language and can design the language so that it is true; it would not

be reasonable if we were claiming to provide a logic for reasoning about an existing

language like Pascal. One consequence of this assumption is that the semantics of

boolean expressions must be the usual logical semantics. We could not, for example,

have ‘sequential’ boolean operators in which the boolean expression T ∨ (1/0 = 0)

evaluates to T, but (1/0 = 0) ∨ T causes an error (due to division by 0).

R5: the WHILE-rule. For any formulae P and B, and command C:

` {P ∧ B} C {P}
` {P} WHILE B DO C {P ∧ ¬B}

A formula P such that ` {P ∧ B} C {P} is called an invariant of C for B.

7.3 Semantics in logic

The traditional denotation of a command C is a function, Meaning(C) say, from

machine states to machine states. The idea is:

Meaning(C)(s) = ‘the state resulting from executing C in state s’

Since WHILE-commands need not terminate, the functions denoted by commands

will be partial . For example, for any state s and command C

Meaning(WHILE T DO C)(s)

will be undefined. Since functions in conventional predicate calculus are total, we

cannot use them as command denotations. Instead we will take the meaning of

commands to be predicates on pairs of states (s1, s2); the idea being that if C

denotes c then:

c(s1, s2) ≡ (Meaning(C)(s1) = s2)

7.3. Semantics in logic 101

i.e.

c(s1, s2) =

T if executing C in state s1 results in state s2

F otherwise

If cWHILE is the predicate denoted by WHILE T DO C, we will simply have:

∀s1 s2. cWHILE(s1, s2) = F

Formally, the type state of states that we use is defined by:

state = string→num

The notation ‘XY Z‘ will be used for the string consisting of the three characters

X, Y and Z; thus ‘XY Z‘ : string . A state s in which the strings ‘X‘, ‘Y ‘ and ‘Z‘

are bound to 1, 2 and 3 respectively, and all other strings are bound to 0, is defined

by:

s = λx. (x = ‘X‘→ 1 | (x = ‘Y ‘→ 2 | (x = ‘Z‘→ 3 | 0)))

If e, b and c are the denotations of E, B and C respectively, then:

e : state→num
b : state→bool
c : state × state→bool

For example, the denotation of X + 1 would be λs. s‘X‘ + 1 and the denotation of

(X + Y) > 10 would be λs. (s‘X‘ + s‘Y ‘) > 10.

It is convenient to introduce the notations [[E]] and [[B]] for the logic terms

representing the denotations of E and B. For example:

[[X + 1]] = λs. s‘X‘ + 1
[[(X + Y) > 10]] = λs. (s‘X‘ + s‘Y ‘) > 10

Note that [[E]] and [[B]] are terms, i.e. syntactic objects.

Sometimes it is necessary for pre and postconditions to contain logical variables

that are not program variables. An example is:

{X = x ∧ Y = y} Z := X; X := Y ; Y := Z {X = y ∧ Y = x}

Here x and y are logical variables whereas X and Y (and Z) are program variables.

The formulae representing the correct semantics of the pre and post conditions of

this specification are:

[[X = x ∧ Y = y]] = λs. s‘X‘ = x ∧ s‘Y ‘ = y
[[X = y ∧ Y = x]] = λs. s‘X‘ = y ∧ s‘Y ‘ = x

The convention adopted here is that upper case variables are program variables and

lower case variables are logical variables (as in the example just given). In our little

programming language the only data type is numbers, hence program variables

will have type num. The definition of [[· · ·]] can now be stated more precisely: if

102 Chapter 7. Deriving Floyd-Hoare Logic

T [X1, . . . , Xn] is a term of higher order logic whose upper case free variables of type

num are X1, . . . , Xn then

[[T [X1, . . . , Xn]]] = λs. T [s‘X1‘, . . . , s‘Xn‘]

In other words if T is a term of type σ then the term [[T]] of type state→σ is obtained

as follows:

(i) Each free upper case variable V of type num is replaced by the term s‘V ‘,

where s is a variable of type state not occurring in P .

(ii) The result of (i) is prefixed by ‘λs.’.

7.3.1 Semantics of commands

To represent the semantics of our little programming language, predicates in higher

order logic that correspond to the five kinds of commands are defined. For each

command C, a term [[C]] of type state × state→bool is defined as follows:

1. [[SKIP]] = Skip

where the constant Skip is defined by:

Skip(s1, s2) = (s1 = s2)

2. [[V := E]] = Assign(‘V ‘, [[E]])

where the constant Assign is defined by:

Assign(v, e)(s1, s2) = (s2 = Bnd(e, v, s1))

where:

Bnd(e, v, s) = λx. (x = v → e s | s x)

3. [[C1; C2]] = Seq([[C1]], [[C2]])

where the constant Seq is defined by:

Seq(c1, c2)(s1, s2) = ∃s. c1(s1, s) ∧ c2(s, s2)

4. [[IF B THEN C1 ELSE C2]] = If([[B]], [[C1]], [[C2]])

where the constant If is defined by:

If(b, c1, c2)(s1, s2) = (b s1 → c1(s1, s2) | c2(s1, s2))

5. [[WHILE B DO C]] = While([[B]], [[C]])

where the constant While is defined by:

While(b, c)(s1, s2) = ∃n. Iter(n)(b, c)(s1, s2)

7.3. Semantics in logic 103

where Iter(n) is defined by primitive recursion as follows:

Iter(0)(b, c)(s1, s2) = F
Iter(n+1)(b, c)(s1, s2) = If(b,Seq(c, Iter(n)(b, c)),Skip)(s1, s2)

Example

R := X;

Q := 0;
WHILE Y ≤ R
DO (R := R− Y ; Q := Q+ 1)

denotes:

Seq
(Assign(‘R‘, [[X]]),
Seq
(Assign(‘Q‘, [[0]]),

While
([[Y ≤ R]],
Seq
(Assign(‘R‘, [[R− Y]],
Assign(‘Q‘, [[Q+ 1]]))))

Expanding the [[· · ·]]s results in:

Seq
(Assign(‘R‘, λs. s‘X‘),
Seq
(Assign(‘Q‘, λs. 0),

While
((λs. s‘Y ‘ ≤ s‘R‘),
Seq
(Assign(‘R‘, λs. s‘R‘− s‘Y ‘),
Assign(‘Q‘, λs. s‘Q‘ + 1)))))

2

It might appear that by representing the meaning of commands with relations,

we can give a semantics to nondeterministic constructs. For example, if C1 ‖ C2 is

the nondeterministic choice ‘either do C1 or do C2’, then one might think that a

satisfactory semantics would be given by:

[[C1 ‖ C2]] = Choose([[C1]], [[C2]])

where the constant Choose is defined by:

Choose(c1, c2)(s1, s2) = c1(s1, s2) ∨ c2(s1, s2)

Unfortunately this semantics has some undesirable properties. For exam-

ple, if cWHILE is the predicate denoted by the non-terminating command

WHILE T DO SKIP, then

∀s1 s2. cWHILE(s1, s2) = F

104 Chapter 7. Deriving Floyd-Hoare Logic

and hence, because ∀t. t ∨ F = t, it follows that:

SKIP ‖ cWHILE = SKIP

Thus the command that does nothing is equivalant to a command that either does

nothing or loops! It is well known how to distinguish guaranteed termination

from possible termination [36]; the example above shows that the relational seman-

tics used here does not do it. This problem will appear again in connection with

Dijkstra’s theory of weakest preconditions in Section 7.6.2.

7.3.2 Semantics of partial correctness specifications

A partial correctness specification {P} C {Q} denotes:

∀s1 s2. [[P]] s1 ∧ [[C]](s1, s2)⇒ [[Q]] s2

To abbreviate this formula, define a constant Spec by:

Spec(p, c, q) = ∀s1 s2. p s1 ∧ c(s1, s2)⇒ q s2

Note that the denotation of pre and postconditions P and Q are not just the log-

ical formulae themselves, but are [[P]] and [[Q]]. For example, in the specification

{X = 1} C {Q}, the precondition X = 1 asserts that the value of the string ‘X‘ in

the initial state is 1. The precondition thus denotes [[P]], i.e. λs. s‘X‘ = 1. Thus:

{X = 1} X := X + 1 {X = 2}

denotes

Spec([[X = 1]], Assign(‘X‘, [[X + 1]]), [[X = 2]])

i.e.

Spec((λs. s‘X‘ = 1), Assign(‘X‘, λs. s‘X‘ + 1), λs. s‘X‘ = 2)

Example

In the specification below, x and y are logical variables whereas X and Y (and Z)

are program variables.

{X = x ∧ Y = y} Z := X; X := Y ; Y := Z {X = y ∧ Y = x}

The semantics of this is thus represented by the term:

Spec([[X = x ∧ Y = y]],
Seq(Assign(‘Z‘, [[X]]),

Seq(Assign(‘X‘, [[Y]]),Assign(‘Y ‘, [[Z]]))),
[[X = y ∧ Y = x]])

which abbreviates:

Spec((λs. s‘X‘ = x ∧ s‘Y ‘ = y),
Seq(Assign(‘Z‘, λs. s‘X‘),

Seq(Assign(‘X‘, λs. s‘Y ‘),Assign(‘Y ‘, λs. s‘Z‘))),
λs. s‘X‘ = y ∧ s‘Y ‘ = x)

2

7.4. Floyd-Hoare logic as higher order logic 105

7.4 Floyd-Hoare logic as higher order logic

Floyd-Hoare logic can be embedded in higher order logic simply by regarding the

concrete syntax given in Section 7.2 as an abbreviation for the corresponding se-

mantic formulae described in Section 7.3. For example:

{X = x} X := X + 1 {X = x+ 1}

can be interpreted as abbreviating:

Spec([[X = x]], Assign(‘X‘, [[X + 1]]), [[X = x+ 1]])

i.e.

Spec((λs. s‘X‘ = x), Assign(‘X‘, λs. s‘X‘ + 1), λs. s‘X‘ = x+ 1)

The translation between the syntactic ‘surface structure’ and the semantic ‘deep

structure’ is straightforward; it can easily be mechanized with a simple parser and

pretty-printer.

If partial correctness specifications are interpreted this way then, as shown in

the rest of this section, the axioms and rules of Hoare logic become derived rules of

higher order logic.

The first step in this derivation is to prove the following seven theorems from

the definitions of the constants Spec, Skip, Assign, Bnd, Seq, If, While and Iter.

H1. ` ∀p. Spec(p,Skip, p)

H2. ` ∀p v e. Spec((λs. p(Bnd(e s, v, s))),Assign(v, e), p)

H3. ` ∀p p′ q c. (∀s. p′ s⇒ p s) ∧ Spec(p, c, q)⇒ Spec(p′, c, q)

H4. ` ∀p q q′ c. Spec(p, c, q) ∧ (∀s. q s⇒ q′ s)⇒ Spec(p, c, q′)

H5. ` ∀p q r c1 c2. Spec(p, c1, q) ∧ Spec(q, c2, r)⇒ Spec(p,Seq(c1, c2), r)

H6. ` ∀p q c1 c2 b.
Spec((λs. p s ∧ b s), c1, q) ∧ Spec((λs. p s ∧ ¬(b s)), c2, q)
⇒

Spec(p, If(b, c1, c2), q)

H7. ` ∀p c b.
Spec((λs. p s ∧ b s), c, p)
⇒

Spec(p,While(b, c), (λs. p s ∧ ¬(b s)))

The proofs of H1 to H7 are rather tedious (and are omitted). All the axioms

and rules of Hoare logic, except for the assignment axiom, can be implemented in

a uniform way from H1 – H7. The derivation of the assignment axiom from H2,

although straightforward, is a bit messy; it is thus explained last (in Section 7.4.7).

106 Chapter 7. Deriving Floyd-Hoare Logic

7.4.1 Derivation of the SKIP-axiom

To derive the SKIP-axiom it must be shown for arbitrary P that:

` {P} SKIP {P}

which abbreviates:

` Spec([[P]],Skip, [[P]])

This follows by specializing p to [[P]] in H1.

7.4.2 Derivation of precondition strengthening

To derive the rule of precondition strengthening it must be shown that for arbitrary

P , P ′, C and Q that:

` P ′ ⇒ P ` {P} C {Q}
` {P ′} C {Q}

Expanding abbreviations converts this to:

` P ′ ⇒ P ` Spec([[P]], [[C]], [[Q]])
` Spec([[P ′]], [[C]], [[Q]])

Specializing H3 yields:

` (∀s. [[P ′]] s⇒ [[P]] s) ∧ Spec([[P]], [[C]], [[Q]])⇒ Spec([[P ′]], [[C]], [[Q]])

The rule of precondition strengthening will follow if ` ∀s. [[P ′]] s⇒ [[P]] s can be

deduced from ` P ′ ⇒ P . To see that this is indeed the case, let us make explicit

the program variables X1, . . . , Xn occurring in P and P ′ by writing P [X1, . . . , Xn]

and P ′[X1, . . . , Xn]. Then ` P ′ ⇒ P becomes

` P ′[X1, . . . , Xn]⇒ P [X1, . . . , Xn]

Since X1 , . . . , Xn are free variables in this theorem, they are implicitly universally

quantified, and hence each Xi can be instantiated to s‘Xi‘ to get:

` P ′[s‘X1‘, . . . , s‘Xn‘]⇒ P [s‘X1‘, . . . , s‘Xn‘]

Generalizing on the free variable s yields:

` ∀s. P ′[s‘X1‘, . . . , s‘Xn‘]⇒ P [s‘X1‘, . . . , s‘Xn‘]

which is equivalent (by β-reduction) to

` ∀s. (λs. P ′[s‘X1‘, . . . , s‘Xn‘]) s⇒ (λs. P [s‘X1‘, . . . , s‘Xn‘]) s

i.e.

` ∀s. [[P ′[X1, . . . , Xn]]] s⇒ [[P [X1, . . . , Xn]]] s

7.4. Floyd-Hoare logic as higher order logic 107

7.4.3 Derivation of postcondition weakening

To derive the rule of postcondition weakening, it must be shown that for arbitrary

P , C, and Q and Q′ that:

` {P} C {Q} ` Q⇒ Q′

` {P} C {Q′}

The derivation of this from H4 is similar to the derivation of precondition

strengthening from H3.

7.4.4 Derivation of the sequencing rule

To derive the sequencing rule, it must be shown that for arbitrary P , C1, R, C2

and and Q that:

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1; C2 {R}

Expanding the abbreviations yields:

` Spec([[P]], [[C1]], [[Q]]) ` Spec([[Q]], [[C2]], [[R]])
` Spec([[P]],Seq([[C1]], [[C2]]), [[R]])

The validity of this rule follows directly from H5.

7.4.5 Derivation of the IF-rule

To derive the IF-rule, it must be shown that for arbitrary P , B, C1, C2 and and Q

that:

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} IF B THEN C1 ELSE C2 {Q}

Expanding abbreviations yields:

` Spec([[P ∧ B]], [[C1]], [[Q]]) ` Spec([[P ∧ ¬B]], [[C2]], [[Q]])
` Spec([[P]], If([[B]], [[C1]], [[C2]]), [[Q]])

This follows from H6 in a similar fashion to the way precondition strenthening

follows from H3.

7.4.6 Derivation of the WHILE-rule

To derive the WHILE-rule, it must be shown that for arbitrary P , B and C that:

` {P ∧ B} C {P}
` {P} WHILE B DO C {P ∧ ¬B}

Expanding abbreviations yields:

` Spec([[P ∧ B]], [[C]], [[P]])
` Spec([[P]],While([[B]], [[C]]), [[P ∧ ¬B]])

This follows from H7.

108 Chapter 7. Deriving Floyd-Hoare Logic

7.4.7 Derivation of the assignment axiom

To derive the assignment axiom, it must be shown that for arbitrary P , E and V :

` {P[E/V]} V := E {P}

This abbreviates:

` Spec([[P[E/V]]],Assign(‘V ‘, [[E]]), [[P]])

By H2:

` ∀p x e. Spec((λs. p(Bnd(e s, x, s))),Assign(x, e), p)

Specializing p, x and e to [[P]], ‘V ‘ and [[E]] yields:

` Spec((λs. [[P]](Bnd([[E]]s, ‘V ‘, s))),Assign(‘V ‘, [[E]]), [[P]])

Thus, to derive the assignment axiom it must be shown that:

` [[P[E/V]]] = λs. [[P]](Bnd([[E]]s, ‘V ‘, s))

To see why this holds, let us make explicit the free program variables in P and E

by writing P [V ,X1, . . . , Xn] and E[V ,X1, . . . , Xn], where X1, . . . , Xn are the free

program variables that are not equal to V . Then, for example, P [1, . . . , n] would

denote the result of substituting 1, . . . , n for X1, . . . , Xn in P respectively. The

equation above thus becomes:

[[P [V ,X1, . . . , Xn][E[V ,X1, . . . , Xn]/V]]]
=
λs. [[P [V ,X1, . . . , Xn]]](Bnd([[E[V ,X1, . . . , Xn]]]s, ‘V ‘, s))

Performing the substitution in the left hand side yields:

[[P [E[V ,X1, . . . , Xn], X1, . . . , Xn]]]
=
λs. [[P [V ,X1, . . . , Xn]]](Bnd([[E[V ,X1, . . . , Xn]]]s, ‘V ‘, s))

Replacing expressions of the form [[P [· · ·]]] by their meaning yields:

(λs. P [E[s‘V ‘, s‘X1‘, . . . , s‘Xn‘], s‘X1‘, . . . , s‘Xn‘])
=
λs. (λs. P [s‘V ‘, s‘X1‘, . . . , s‘Xn‘])(Bnd([[E[V ,X1, . . . , Xn]]]s, ‘V ‘, s))

Performing a β-reduction on the right hand side, and then simplifying with the

following easily derived properties of Bnd (the second of which assumes ‘V ‘ 6= Xi):

` Bnd([[E[V ,X1, . . . , Xn]]]s, ‘V ‘, s) ‘V ‘ = [[E[V ,X1, . . . , Xn]]]s

` Bnd([[E[V ,X1, . . . , Xn]]]s, ‘V ‘, s) Xi = s Xi

results in:
(λs. P [E[s‘V ‘, s‘X1‘, . . . , s‘Xn‘], s‘X1‘, . . . , s‘Xn‘])
=
λs. P [[[E[V ,X1, . . . , Xn]]]s, s‘X1‘, . . . , s‘Xn‘]

7.5. Termination and total correctness 109

which is true since:

[[E[V ,X1, . . . , Xn]]]s = E[s‘V ‘, s‘X1‘, . . . , s‘Xn‘]

Although this derivation might appear tricky at first sight, it is straightforward

and easily mechanized.

It is tempting to try to formulate the assignment axiom as a theorem of higher

order logic looking something like:

∀p e v. Spec(p[e/v],Assign(v, e), p)

Unfortunately, the expression p[e/v] does not make sense when p is a variable.

P[E/V] is a meta notation and consequently the assignment axiom can only be

stated as a meta theorem. This elementary point is nevertheless quite subtle. In

order to prove the assignment axiom as a theorem within higher order logic it

would be necessary to have types in the logic corresponding to formulae, variables

and terms. One could then prove something like:

∀P E V. Spec(Truth(Subst(P,E, V)), Assign(V,Value E), Truth P)

It is clear that working out the details of this would be lots of work. This sort of

embedding of a subset of a logic within itself has been explored in the context of

the Boyer-Moore theorem prover [6].

7.5 Termination and total correctness

Hoare logic is usually presented as a self-contained calculus. However, if it is re-

garded as a derived logic, as it is here, then it’s easy to add extensions and modi-

fications without fear of introducing unsoundness. To illustrate this, we will sketch

how termination assertions can be added, and how these can be used to prove total

correctness.

A termination assertion is a formula Halts([[P]], [[C]]), where the constant Halts

is defined by:

Halts(p, c) = ∀s1. p s1 ⇒ ∃s2. c(s1, s2)

Notice that this says that c ‘halts’ under precondition p if there is some final state

for each initial state satisfying p. For example, although WHILE T DO SKIP does not

terminate, the definition above suggests that (WHILE T DO SKIP) ‖ SKIP does, since:

` Halts([[T]], Choose([[WHILE T DO SKIP]], [[SKIP]]))

(‖ and Choose are described in Section 7.3). The meaning of Halts([[P]], [[C]]) is ‘some

computation of C starting from a state satisfying P terminates’ this is quite different

from ‘every computation of C starting from a state satisfying P terminates’. The

latter stronger kind of termination requires a more complex kind of semantics for its

110 Chapter 7. Deriving Floyd-Hoare Logic

formalization (e.g. one using powerdomains [36]). If commands are deterministic,

then termination is adequately formalized by Halts. It is intuitively clear that the

relations denoted by commands in our little language (not including ‖) are partial

functions. If Det is defined by:

Det c = ∀s s1 s2. c(s, s1) ∧ c(s, s2)⇒ (s1 = s2)

then for any command C it can be proved that ` Det [[C]]. This fact will be needed

to show that the formalization of weakest preconditions in Section 7.6.2 is correct.

The informal equation

Total correctness = Termination + Partial correctness.

can be implemented by defining:

Total Spec(p, c, q) = Halts(p, c) ∧ Spec(p, c, q)

Then [P] C [Q] is represented by Total Spec([[P]], [[C]], [[Q]]).

From the definition of Halts it is straightforward to prove the following theorems:

T1. ` ∀p. Halts(p,Skip)

T2. ` ∀p v e. Halts(p,Assign(v, e))

T3. ` ∀p p′ c. (∀s. p′ s⇒ p s) ∧ Halts(p, c)⇒ Halts(p′, c)

T4. ` ∀p c1 c2 q. Halts(p, c1) ∧ Spec(p, c1, q) ∧ Halts(q, c2)
⇒ Halts(p,Seq(c1, c2))

T5. ` ∀p c1 c2 b. Halts(p, c1) ∧ Halts(p, c2)⇒ Halts(p, If(b, c1, c2))

T6. ` ∀b c x.
(∀n. Spec((λs. p s ∧ b s ∧ (s x = n)), c, (λs. p s ∧ s x < n)))
∧ Halts((λs. p s ∧ b s), c)
⇒ Halts(p,While(b, c))

T6 shows that if x is a variant , i.e. a variable whose value decreases each time

‘around the loop’, then the WHILE-command halts.

7.5.1 Derived rules for total correctness

Using T1 – T6 above and H1 – H7 of Section 7.4, it is straightforward to apply the

methods described in Section 7.4 to implement the derived rules for total correctness

shown below. These are identical to the corresponding rules for partial correctness

except for having ‘[’ and ‘]’ instead of ‘{’ and ‘}’ respectively.

` [P] SKIP [P]

` P ′ ⇒ P ` [P] C [Q]
` [P ′] C [Q]

7.6. Other programming logic constructs 111

` [P] C [Q] ` Q⇒ Q′

` [P] C [Q′]

` [P] C1 [Q] ` [Q] C2 [R]
` [P] C1; C2 [R]

` [P ∧ B] C1 [Q] ` [P ∧ ¬B] C2 [Q]
` [P] IF B THEN C1 ELSE C2 [Q]

The total correctness rule for WHILE-commands needs a stronger hypothesis than

the corresponding one for partial correctness. This is to ensure that the command

terminates. For this purpose, a variant is needed in addition to an invariant.

` [P ∧ B ∧ (N = n)] C [P ∧ (N < n)]
` [P] WHILE B DO C [P ∧ ¬B]

Notice that since

Total Spec(p, c, q) = Halts(p, c) ∧ Spec(p, c, q)

it is clear that the following rule is valid

` [P] C [Q]
` {P} C {Q}

The converse to this is only valid if C contains no WHILE-commands. We thus

have the derived rule:

` {P} C {Q}
` [P] C [Q]

if C contains no WHILE-commands.

7.6 Other programming logic constructs

In this section, three variants on Hoare logic are described.

(i) VDM-style specifications.

(ii) Weakest preconditions.

(iii) Dynamic logic.

7.6.1 VDM-style specifications

The Vienna Development Method (VDM) [24]) is a formal method for program de-

velopment which uses a variation on Hoare-style specifications. The VDM notation

reduces the need for auxiliary logical variables by providing a way of refering to the

initial values of variables in postconditions. For example, the following Hoare-style

partial correctness specification:

{X = x ∧ Y = y} R:= X; X:= Y ; Y := R {Y = x ∧ X = y}

112 Chapter 7. Deriving Floyd-Hoare Logic

could be written in a VDM-style as:

{T} R:= X; X:= Y ; Y := R {Y =
↼−
X ∧ X =

↼−
Y }

where
↼−
X and

↼−
Y denote the values X and Y had before the three assignments were

executed. More generally,

{P [X1, . . . , Xn]} C {Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]}

can be thought of as an abbreviation for

{P [X1, . . . , Xn] ∧ X1 =
↼−
X1 ∧ . . . ∧ Xn =

↼−
Xn}

C

{Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]}

where
↼−
X1, . . . ,

↼−
Xn are distinct logical variables not occurring in C.

Although the meaning of individual VDM specifications is clear, it is not so

easy to see what the correct Hoare-like rules of inference are. For example, the

sequencing rule must somehow support the deduction of

{T} X:= X + 1; X:= X + 1 {X =
↼−
X + 2}

from

{T} X:= X + 1 {X =
↼−
X + 1}

There is another semantics of VDM specifications, which Jones attributes to

Peter Aczel [24]. This semantics avoids the need for hidden logical variables and

also makes it easy to see what the correct rules of inference are. The idea is to

regard the postcondition as a binary relation on the initial and final states. This

can be formalized by regarding

{P [X1, . . . , Xn]} C {Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]}

as an abbreviation for

VDM Spec([[P [X1, . . . , Xn]]], [[C]], [[Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]]]2)

where VDM Spec is defined by:

VDM Spec(p, c, r) = ∀s1 s2. p s1 ∧ c(s1, s2)⇒ r(s1, s2)

and the notation [[· · ·]]2 is defined by:

[[Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]]]2 =

λ(s1, s2). Q[s2‘X1‘, . . . , s2‘Xn‘, s1‘X1‘, . . . , s1‘Xn‘]

The sequencing rule now corresponds to the theorem:

7.6. Other programming logic constructs 113

` ∀p1 p2 r1 r2 c1 c2.
VDM Spec(p1, c1, λ(s1, s2). p2 s2 ∧ r1(s1, s2)) ∧
VDM Spec(p2, c2, r2) ⇒
VDM Spec(p1, Seq(c1, c2), Seq(r1, r2))

Example

If {T} X:= X + 1 {X =
↼−
X + 1} is interpreted as:

VDM Spec([[T]], [[X:= X + 1]], [[X =
↼−
X + 1]]2)

which (since ` ∀x. T ∧ x = x) implies:

VDM Spec([[T]], [[X:= X + 1]], λ(s1, s2). [[T]]s2 ∧ [[X =
↼−
X + 1]]2(s1, s2))

and hence it follows by the sequencing theorem above that:

VDM Spec([[T]], [[X:= X + 1; X:= X + 1]], Seq([[X =
↼−
X + 1]]2, [[X =

↼−
X + 1]]2))

By the definition of Seq in Section 7.3:

Seq([[X =
↼−
X + 1]]2, [[X =

↼−
X + 1]]2)(s1, s2)

= ∃s. [[X =
↼−
X + 1]]2(s1, s) ∧ [[X =

↼−
X + 1]]2(s, s2)

= ∃s. (λ(s1, s2). s2‘X‘ = s1‘X‘ + 1)(s1, s) ∧ (λ(s1, s2). s2‘X‘ = s1‘X‘ + 1)(s, s2)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = s‘X‘ + 1)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = (s1‘X‘ + 1) + 1)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = s1‘X‘ + 2)
= (∃s. s‘X‘ = s1‘X‘ + 1) ∧ (∃s. s2‘X‘ = s1‘X‘ + 2)
= T ∧ (s2‘X‘ = s1‘X‘ + 2)
= (s2‘X‘ = s1‘X‘ + 2)

= [[X =
↼−
X + 2]]2(s1, s2)

Hence:

` {T} X:= X + 1; X:= X + 1 {X =
↼−
X + 2}

2

An elegant application of treating postconditions as binary relations is Aczel’s

version of the WHILE-rule [24]:

` {P ∧ B} C {P ∧ R}
` {P} WHILE B DO C {P ∧ ¬B ∧ R∗}

Where R∗ is the reflexive closure of R defined by

R∗(s1, s2) = ∃n. Rn(s1, s2)

and Rn is definable in higher order logic by the following primitive recursion:

R0 = λ(s1, s2). (s1 = s2)

Rn+1 = Seq(R,Rn)

Aczel pointed out that his version of the WHILE-rule can be converted into a rule of

total correctness simply by requiring R to be transitive and well-founded:

114 Chapter 7. Deriving Floyd-Hoare Logic

` [P ∧ B] C [P ∧ R] ` Transitive R ` Well Founded R
` [P] WHILE B DO C [P ∧ ¬B ∧ R∗]

where:

Transitive r = ∀s1 s2 s3. r(s1, s2) ∧ r(s2, s3)⇒ r(s1, s3)

Well Founded r = ¬∃f : num→state. ∀n. r(f(n), f(n+ 1))

Notice how it is straightforward to define notions like Transitive and Well Founded

in higher order logic; these cannot be defined in first order logic.

7.6.2 Dijkstra’s weakest preconditions

Dijkstra’s theory of weakest preconditions, like VDM, is primarily a theory of rig-

orous program construction rather than a theory of post hoc verification. As will

be shown, it is straightforward to define weakest preconditions for deterministic

programs in higher order logic2.

In his book [10], Dijkstra introduced both ‘weakest liberal preconditions’ (Wlp)

and ‘weakest preconditions’ (Wp); the former for partial correctness and the latter

for total correctness. The idea is that if C is a command and Q a predicate, then:

• Wlp(C,Q) = ‘The weakest predicate P such that {P} Q {Q}’

• Wp(C,Q) = ‘The weakest predicate P such that [P] Q [Q]’

Before defining these notions formally, it is necessary to first define the general

notion of the ‘weakest predicate’ satisfying a condition. If p and q are predicates

on states (i.e. have type state→bool), then define p⇐q to mean p is weaker (i.e.

‘less constraining’) than q, in the sense that everything satisfying q also satisfies p.

Formally:

p⇐q = ∀s. q s⇒ p s

The weakest predicate satisfying a condition can be given a general definition

using Hilbert’s ε-operator.

Weakest P = εp. P p ∧ ∀p′. P p′ ⇒ (p⇐p′)

Dijkstra’s two kinds of weakest preconditions can be defined by:

Wlp(c, q) = Weakest(λp. Spec(p, c, q))

Wp(c, q) = Weakest(λp. Total Spec(p, c, q))

These definitions seems to formalize the intuitive notions described by Dijkstra,

but are cumbersome to work with. The theorems shown below are easy consequences

of the definitions above, and are much more convenient to use in formal proofs.

2Dijkstra’s semantics of nondeterministic programs can also be formalized in higher order logic,
but not using the simple methods described in this paper (see the end of Section 7.3.1).

7.6. Other programming logic constructs 115

` Wlp(c, q) = λs. ∀s′. c(s, s′)⇒ q s′

` Wp(c, q) = λs. (∃s′. c(s, s′)) ∧ ∀s′. c(s, s′)⇒ q s′

The relationship between Hoare’s notation and weakest preconditions is given

by:

` Spec(p, c, q) = ∀s. p s⇒Wlp(c, q) s

` Total Spec(p, c, q) = ∀s. p s⇒Wp(c, q) s

The statement of the last two theorems, as well as other results below, can be

improved if ‘big’ versions of the logical operators ∧, ∨ ⇒ and ¬, and constants T

and F are introduced which are ‘lifted’ to predicates. These are defined in the table

below, together with the operator |= which tests whether a predicate is always true.

These lifted predicates will also be useful in connection with dynamic logic.

Operators on predicates

p ∧ q = λs. p s ∧ q s
p ∨ q = λs. p s ∨ q s
p⇒q = λs. p s⇒ q s
¬p = λs. ¬p s
T = λs. T
F = λs. F

|= p = ∀s. p s

The last two theorems can now be reformulated more elegantly as:

` Spec(p, c, q) = |= p⇒Wlp(c, q)

` Total Spec(p, c, q) = |= p⇒Wp(c, q)

In Dijkstra’s book, various properties of weakest preconditions are stated as

axioms, for example:

Property 1. ` ∀c. |= Wp(c,F) = F

Property 2. ` ∀q r c. |= (q⇒r) ⇒ (Wp(c, q)⇒Wp(c, r))

Property 3. ` ∀q r c. |= Wp(c, q) ∧ Wp(c, r) = Wp(c, q∧r)

Property 4. ` ∀q r c. |= Wp(c, q) ∨ Wp(c, r)⇒Wp(c, q∨r)

Property 4′. ` ∀q r c. Det c ⇒ |= Wp(c, q) ∨ Wp(c, r) = Wp(c, q∨r)

116 Chapter 7. Deriving Floyd-Hoare Logic

These all follow easily from the definition of Wp given above (Det is the determi-

nacy predicate defined in Section 7.5). It is also straightforward to derive analogous

properties of weakest liberal preconditions:

` ∀c. |= Wlp(c,F) = λs. ¬∃s′. c(s, s′)

` ∀q r c. |= (q⇒r)⇒ (Wlp(c, q)⇒Wlp(c, r))

` ∀q r c. |= Wlp(c, q) ∧ Wlp(c, r) = Wlp(c, q∧r)

` ∀q r c. |= Wlp(c, q) ∨ Wlp(c, r)⇒Wlp(c, q∨r)

` ∀q r c. Det c ⇒ |= Wlp(c, q) ∨ Wlp(c, r) = Wlp(c, q∨r)

Many of the properties of programming constructs given in Dijkstra’s book [10]

are straightforward to verify for the constructs of our little language. For example:

` Wp([[SKIP]], q) = q

` Wlp([[SKIP]], q) = q

` Wp([[V := E]], q) = λs. q(Bnd ([[E]]s) ‘V ‘ s)

` Wlp([[V := E]], q) = λs. q(Bnd ([[E]]s) ‘V ‘ s)

` Wp([[IF B THEN C1 ELSE C2]], q) = λs. ([[B]]s→Wp([[C1]], s) |Wp([[C2]], s))

` Wlp([[IF B THEN C1 ELSE C2]], q) = λs. ([[B]]s→Wlp([[C1]], s) |Wlp([[C2]], s))

The inadequacy of the relational model reveals itself when we try to derive

Dijkstra’s Wp-law for sequences. This law is:

Wp([[C1; C2]], q) = Wp([[C1]], Wp([[C2]], q))

which is not true with our semantics. For example, taking:

s1 = λx. 0
s2 = λx. 1
c1(s1, s2) = (s1 = s1) ∨ (s2 = s2)
c2(s1, s2) = (s1 = s1) ∧ (s2 = s2)

results in:

Wp(Seq(c1, c2),T) = T

but

Wp(c1, Wp(c2,T)) = F

The best that can be proved using the relational semantics is the following:

7.6. Other programming logic constructs 117

` Det [[C1]] ⇒ Wp([[C1; C2]], q) = Wp([[C1]], Wp([[C2]], q))

As discussed in Section 7.3.1, the problem lies in the definition of Halts. For partial

correctness there is no problem; the following sequencing law for weakest liberal

preconditions can be proved from the relational semantics.

` Wlp([[C1; C2]], q) = Wlp([[C1]], Wlp([[C2]], q))

With relational semantics, the Wp-law for WHILE-commands also requires a de-

terminacy assumption:

` Det c ⇒ Wp([[WHILE B DO C]], q) s = ∃n. Iter Wp n [[B]] [[C]] q s

where

Iter Wp 0 b c q = ¬b ∧ p
Iter Wp (n+1) b c q = b ∧ Wp(c, Iter Wp n b c p)

However, the Wlp-law for WHILE-commands does not require a determinacy assump-

tion:

` Wlp([[WHILE B DO C]], q) s = ∀n. Iter Wlp n [[B]] [[C]] q s

where
Iter Wlp 0 b c q = ¬b⇒ p
Iter Wlp (n+1) b c q = b⇒ Wlp(c, Iter Wlp n b c p)

7.6.3 Dynamic logic

Dynamic logic is a programming logic which emphasizes an analogy between Hoare

logic and modal logic; it was invented by V.R. Pratt based on an idea of R.C. Moore

[37, 14]. In dynamic logic, states of computation are thought of as possible worlds,

and if a command C transforms an initial state s to a final state s′ then s′ is thought

of as accessible from s (the preceding phrases in italics are standard concepts from

modal logic).

Modal logic is characterized by having formulae 2q and 3q with the following

interpretations.

• 2q is true in s if q is true in all states accessible from s.

• 3q is true in s if ¬2¬q is true in s.

Instead of a single 2 and 3, dynamic logic has operators [C] and <C> for each

command C. These can be defined on the relation c denotated by C as follows:

[c]q = λs. ∀s′. c(s, s′)⇒ q s′

<c>q = ¬([c](¬q))

118 Chapter 7. Deriving Floyd-Hoare Logic

where ¬ is negation lifted to predicates (see preceding section).

A typical theorem of dynamic logic is:

` ∀c q. Det c ⇒ |= <c>q⇒[c]q

This is a version of the modal logic principle that says that if the accessibility

relation is functional then 3q ⇒ 2q [14].

From the definitions of [c]q and <c>q it can be easily deduced that:

` (|= [c]q) = Spec(T, c, q)

` Det c ⇒ ((|= <c>q) = Total Spec(T, c, q))

` Spec(p, c, q) = (|= p⇒[c]q)

` Det c ⇒ (Total Spec(p, c, q) = (|= p⇒<c>q))

Where |=,⇒ and T were defined in the preceding section. Using these relationships,

theorems of dynamic logic can be converted to theorems of Hoare logic (and vice

versa).

Dynamic logic is closely related to weakest preconditions as follows:

` Wlp(c, q) = [c]q

` Det c ⇒ (Wp(c, q) = <c>q)

These theorems can be used to translate results from one system to the other.

Bibliography

[1] Alagić, S. and Arbib, M.A., The Design of Well-structured and Correct Pro-

grams, Springer-Verlag, 1978.

[2] Andrews, P.B., An Introduction to Mathematical Logic and Type Theory,

Academic Press, 1986.

[3] Back, R.J.R, On correct refinement of programs in Journal of Computer and

Systems Sciences, Vol. 23, No. 1, pp 49-68, August 1981.

[4] Backhouse, R.C., Program Construction and Verification, Prentice Hall, 1986.

[5] Boyer, R.S. and Moore, J S., A Computational Logic, Academic Press, 1979.

[6] Boyer, R.S., and Moore, J S., ‘Metafunctions: proving them correct and using

them efficiently as new proof procedures’ in Boyer, R.S. and Moore, J S. (eds),

The Correctness Problem in Computer Science, Academic Press, New York,

1981.

[7] Chang, C. and Lee, R.C., Symbolic Logic and Mechanical Theorem Proving ,

Academic Press, 1973.

[8] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic 5, 1940.

[9] Clarke, E.M. Jr., ‘The characterization problem for Hoare logics’, in Hoare,

C.A.R. and Shepherdson, J.C. (eds), Mathematical Logic and Programming

Languages, Prentice Hall, 1985.

[10] Dijkstra, E.W., A Discipline of Programming , Prentice-Hall, 1976.

[11] Floyd, R.W., ‘Assigning meanings to programs’, in Schwartz, J.T. (ed.), Math-

ematical Aspects of Computer Science, Proceedings of Symposia in Applied

Mathematics 19 (American Mathematical Society), Providence, pp. 19-32,

1967.

[12] Genesereth, M.R and Nilsson, N.J., Logical Foundations of Artificial Intelli-

gence, Morgan Kaufman Publishers, Los Altos, 1987.

[13] Nagel, E. and Newman, J.R., Gödel’s Proof, Routledge & Kegan Paul, London,

1959.

119

120 Bibliography

[14] Goldblatt, R., Logics of Time and Computation, CSLI Lecture Notes 7,

CSLI/Stanford, Ventura Hall, Stanford, CA 94305, USA, 1987.

[15] M. Gordon, R. Milner and C. Wadsworth. Edinburgh LCF: A mechanised logic

of computation. Lecture Notes in Computer Science No. 78, Springer-Verlag,

1979.

[16] Gordon, M.J.C.,The Denotational Description of Programming Languages,

Springer-Verlag, 1979.

[17] Gries, D., The Science of Programming, Springer-Verlag, 1981.

[18] W. Hatcher. The Logical Foundations of Mathematics. Pergamon Press, 1982.

[19] Hehner, E.C.R., The Logic of Programming, Prentice Hall, 1984.

[20] Hoare, C.A.R., ‘An axiomatic basis for computer programming’, Communica-

tions of the ACM , 12, pp. 576-583, October 1969.

[21] Hoare, C.A.R., ‘A Note on the FOR Statement’, BIT, 12, pp. 334-341, 1972.

[22] Hoare, C.A.R., ‘Programs are predicates’, in Hoare, C.A.R. and Shepherdson,

J.C. (eds), Mathematical Logic and Programming Languages, Prentice Hall,

1985.

[23] Jones, C.B., Systematic Software Development Using VDM, Prentice Hall,

1986.

[24] Jones, C.B., ‘Systematic Program Development’ in Gehani, N. & McGettrick,

A.D. (eds), Software Specification Techniques, Addison-Wesley, 1986.

[25] Joyce, E., ‘Software bugs: a matter of life and liability’, Datamation, 33, No.

10, May 15, 1987.

[26] A. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol . Macdonald & Co.

Ltd. London, 1969.

[27] Ligler, G.T., ‘A mathematical approach to language design’, in Proceedings of

the Second ACM Symposium on Principles of Programming Languages, pp.

41-53, 1985.

[28] Loeckx, J. and Sieber, K., The Foundations of Program Verification, John

Wiley & Sons Ltd. and B.G. Teubner, Stuttgart, 1984.

[29] London, R.L., et al. ‘Proof rules for the programming language Euclid’, Acta

Informatica, 10, No. 1, 1978.

[30] S. MacLane and G Birkhoff. Algebra. The Macmillan Company, 1967.

Bibliography 121

[31] Manna, Z., Mathematical Theory of Computation, McGraw-Hill, 1974.

[32] Manna, Z. and Waldinger, R., The Logical Basis for Computer Programming,

Addison-Wesley, 1985.

[33] Milner, A.R.J.G. ‘A Theory of Type Polymorphism in Programming’, Journal

of Computer and System Sciences, 17, 1978.

[34] Morgan, C.C., Programming from Specifications, Prentice-Hall, 1990.

[35] Morris, J.M. A Theoretical Basis for Stepwise Refinement and the Program-

ming Calculus, in Science of Computer Programming, vol. 9, pp 287–306, 1989.

[36] Plotkin, G.D., ‘Dijkstra’s Predicate Transformers and Smyth’s Powerdomains’,

in Bjørner, D. (ed.), Abstract Software Specifications, Lecture Notes in Com-

puter Science 86, Springer-Verlag, 1986.

[37] Pratt, V.R., ‘Semantical Considerations on Floyd-Hoare Logic’, Proceedings of

the 17th IEEE Symposium on Foundations of Computer Science, 1976.

[38] Reynolds, J.C., The Craft of Programming, Prentice Hall, London, 1981.

[39] Schoenfield, J.R., Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

