"SI8pJoY JYbLIAdoD ay) Jo U0 JO UOISSIULIBA UBJIIM SSBIAXD ) JNOYIM UL [8IDIUILLIOD

10 Uosiad Aue Ag sajou buryey 1oy pred buiaq 1o 03 sajou bullias wo.ly payqiyold ale Sjuapnis ‘8sinod siy buling siapjoy
YbLAdOD By Jo uoissiuIad UM SSaIdXa Bl JNOYIM LWLIOJ PALHIPOLU 10 WO JUBLIND 1IBY) Ul eMOJ JO AJSIaAIUL) BY]

JO 8pISIN0 SbUIISS 85.1N02 13YJ0 Ul Pasn aq Jou Aew pue sjeliajewl pajybliAdod a1e sajou 9sal] ‘ANSioniun) a)els sesuey
18 [J[SMOH poy pue ‘Jjij23eH uyor 1eAma 13em Aq padojanap Ajjeulblio sajou 84njos) Jo 18s e Uo paseq a1e Sajou 9sal [
W[PULL 81853 pue JfoMOH POy pue JiReH uyor “1eima pew ‘€0-100Z WbrAdod

9p0) eAe[ JO Saladold |eled
bunpoay) pue bulAjidads 8T 3.4n3097

Bbulisauibug aiem)og
Ul SPOYI9N |eWIOH | 813¢C

emo| Jo AlIsis




-d Static Checking

= Theorem-proving based technology for
reasoning statically (i.e. at compile time)

= about annotated programs
= With respect to run-time errors

= Long-term project at DEC/Compaqg
« Started in early 90s for Modula-3
= Then adapted to Java
= Project ended in 2001
=« ESC/Java now part of JML project



1 Phiosophy

= Can’t check everything

= Sacrifice generality and thoroughness for
speed

= ESC is incomplete
= Error reports may not be real defects

= ESC is unsound
= Defective programs may not be reported




1 Phiosophy

= Provide a useful tool with little
Investment

=« Without any specifications
=« Incremental gain for added specifications

= Focus on common or hard to find errors
= Null pointer dereference
= array index bounds errors
= type cast errors
= race conditions



- Annotations

= Embedded in comments

= Single line comments
//@

= Multi-line comments
/7‘:@

h"
p2 /



= Detects potential run-time errors

= JVM exceptions

« NullPointergException,
IndexOutOfBoundsException,
ClassCastException, ArrayStoreException,
ArithmeticException,

NegativeArraySizeException
= Errors reported even if exception is caught

= Programmer annotations

= invariants, precondition, postconditions, and
assertions




-a Expression Language

= Based on Java’s boolean expression
syntax

= Restricts some legal Java expressions
« Side-effect free Java expressions with no calls
« E.g., cannot use =", "++", "new”

= Introduces some special expressions
= Subset of Java Modeling Language (JML)
= Less expressive than OCL




= EXpression evaluation errors
» €.g.,, NullPo1ntergException
= Do not give rise to error reports

= Yield undefined values =» failure to prove
annotation in which expression is embedded



- Operators (excerpts)

= \type(E)
construct spec type from Java type

= \typeof(E)
returns dynamic type of E

= \elemtype(E)
returns element type of an array

s S<:T
holds iff S is a subtype of T (oris T)



-a Operators (excerpts)

= \type(E) : construct spec type from Java type
= \typeof(E) : returns dynamic type of E
= \elemtype(E) : returns element type of an array

s S<:T : S is a subtype of T (or equal)
Example:
void storeObject(T[] a, int I, T x) {
ali] = x;
)

What happens if the dynamic type of a is "S[]”
where S is a subtype of T?  ArrayStoreException



- Operators (excerpts)

void storeObject(T[] a, int I, T x) {
ali] = x;

y
There are multiple ways to specify that this cannot happen:
//@ requires \elemtype(\typeof(a)) == \type(T);
//@ requires \typeof(a) == \type(T[]);

//@ requires x == null ||
//@ \typeof(x) <: \elemtype(\typeof(a));



-va Operators (excerpts)

= \old : like “"@pre” in OCL
s \result : return value

= \fresh(e) : e is non-null in post-state and
unallocated in pre-state

n==> : implies
= \exists : existential quantification
= \forall : universal quantification

= \nonnullelements : custom \forall
= A rich set of lock querying operators



-a Operators (excerpts)

(\forall T V; E)

= E is true for all substitutions of values of T
bound to variables V

= For reference types T, quantifier ranges over
allocated instances (excluding null)

= For integral types T, values range over
mathematical integers NOT computer-based
integers



-a Operators (excerpts)

(\exists T V; E)

= E is true for some substitution of values of T
bound to variables V

\nonnullelements(A) // A array
A '= null &&
(\forall int i;
0 <=i&&i< A.length ==> AJi] = null)



Consider an implementation of the “"academia” system
with the following class that implements the attributes
and associations of "Course” in our OCL model:

class Course {
String name;
int number;
Instructor teacher;
Student[] enrolled;
int numEnrolled;
Student[ ] waiting;
int numWaiting;
Course[] preregs;
numPrereqgs;



Express the following OCL invariants in ESC/Java
(assume that you are in the context of the Course class):

-- NoWaitingUnlessEnrolled:
-- .. ho one is waiting for a course unless someone is enrolled.
context c:Course
inv NoWaitingUnlessEnrolled:
c.waitList->notEmpty implies c.enrolled->notEmpty

-- NoSelfPrerequisite
-- .. N0 course has itself as a prerequisite
context c:Course
inv NoSelfPrerequisite:
c.prerequisites->excludes(c)



- Based Checking

= ESC/Java suppor

's many forms of

annotation that we are familiar with

s Data annotations

= Invariant

= Method annotations

= requires
=« modifies
= ensures
= also_requires, ...
= exsures

[ pre-condition]
'frame-condition]
'post-condition]
‘for sub-typing]
[for exceptions]




= Modifies clauses used by caller

= Implementing method is not checked to
see that it does not modify unmentioned
variables

: refers to post-state value (1)
= Unless you include:

= Explanation is a bit subtle
= (see the manual)




-ific Annotations

= Basic annotations (pragmas)

» howarn, assert, assume,
unreachable

= Data annotations
= non_null, axiom, loop_invariant

= Abstraction support
s Spec_public, ghost, set

= Synchronization specific pragmas




Consider an implementation of the “academia” system with the followin
class that implements the attributes, associations and operations of the
“Course” and "“Student” in our OCL model:

class Course { class Student {
String name; String name;
int number; Id sid;
Instructor teacher; Course[] taking;
Student[] enrolled; int numTaking;
int numEnrolled; Course[ ] waitingFor;
Student[] waiting; int numWaitingFor;
int numWaiting; TranscriptEntry[] transcript;
Course[ ] preregs; int numTranscriptEntries;
numPrereqgs;

void dropCourse(Course c) {...}
public void addPreReq(Course ¢) {...} void newld(n : Integer) {...}

¥ }



Express the following OCL operation specifications in ESC
(assume that you are in the context of the Course class):

-- newld pre/post-conditions
-- .. pre-conditions
-- - n is greater than 100
.. post-conditions
-- - Id object is new and its number is equal to the supplied parameter
context Student::newlId(n : Integer)
pre GE100: n >=100
post NewlId: id.oclIsNew
post IdNumber: id.number = n

-- dropCourse pre/post-conditions
-- .. pre-conditions
-- - currently taking course
-- .. post-conditions
-- - taking same as old taking minus given course
context Student::dropCourse(c: Course)
pre NowTaking: taking->includes(c)
post NotTaking: taking = taking@pre->excluding(c)



= ESC Java will analyze the program to see if the
annotations hold

= Local annotations
= assert E
= unreachable [assert false]
= loop_invariant E [do, while loops]

= Method annotations
= requires, ensures
[specific method entry and exit]

= Global annotations
= Tnvariant E [every method entry and exit]
= hon_null V [checked at every assignment]



Blchecked Annotations

= User supplied information about program

behavior
= Suppress warnings at a statement
= howarn [parameterized by error]

= Assumptions about data
= assume E [local assumption]
= axiom E [global assumption]



-ked Annotations

= Are the main source of unsoundness in ESC
Java

= The user can tell the system that something is
true about a variable when it is not the case

= Are the main mechanism for reducing
spurious error reports
=« Due to incompleteness of theorem-prover

= Sometimes ESC Java warns you that
assumptions may invalidate a result




-ion Philosophy

= Include checked annotations in your
program

= That express the properties you want the
code to have

= Include assumptions only when you
obtain a wrong error report

= When possible use checked annotations
rather than assumptions

= €.g., Invariant versus axiom




I Modulr Creciing

= ESC Java analyzes programs one method at
a time

=« Performance is improved
= Accuracy is a problem

= No information about calling context
= Possible parameter or field values

= Does not analyze called methods

= Use annotations to represent effects of method
call




[ specries

= ESC/Java uses source annotations

= What if the sources are not available?
= e.g., libraries

= Generate simple spec from .class files
= Constraints that enforce proper typing

= Use . spec files
=« Routine bodies may be omitted via *;” or “{ }"”
= comes with specs for Java libraries



Stack .spec file

public class Stack extends Vector {

//@ requires \typeof(item) <: elementType || item==null
//@ requires containsNull || item!=null

//@ modifies elementCount

//@ ensures elementCount == \old(elementCount)+1
//@ ensures \result==item

public Object push(/*@non_null*/ Object item) { }

//@ requires elementCount > 0

//@ modifies elementCount

//@ ensures elementCount == \old(elementCount)-1

//@ ensures \typeof(\result) <: elementType || \result==null
//@ ensures !containsNull ==> \result!=null

public synchronized Object pop() { }



What ESC/Java annotations would you use
for the “top” method of the stack?

i.e., the method that returns the top
element, but does not “pop” it

Try to be provide annotations at the same
level of detail as the one’s just presented.



