
 
 

 

Dear Sir, Yours faithfully: an Everyday Story of Formality 
 
Peter Amey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Publication notes 

Invited keynote address at the Twelfth Safety-critical Systems Symposium, Birmingham, 
UK, 17-19 February 2004. 
 
Published in “Practical Elements of Safety” 
Felix Redmill, Tom Anderson (Eds) 
Springer 
ISBN 1-85233-800-8 
 

 



 



Dear Sir, Yours faithfully: an Everyday Story of
Formality

Peter Amey

Praxis Critical Systems, 20, Manvers St., Bath BA1 1PX, UK
peter.amey@praxis-his.com

Abstract. The paper seeks a perspective on the reality of Formal Methods
in industry today. What has worked; what has not; and what might the future
bring? We show that where formality has been adopted it has largely been
benefical. We show that formality takes many forms, not all of them obviously
“Formal Methods”.

1 Introduction

This could have been the shortest paper in the history of the SCSC. Formal Methods
were briefly promoted by a small group of academic zealots in the 1980s. There
were no useable tools, the methods didn’t scale to real problems and industry—
after careful evaluation of the evidence—quickly abandoned them. Formal methods
are now dead (more dead even than Ada, if that’s possible). End of story.

Not true, certainly, but a pastiche that is not a million miles from the perceptions,
and prejudices, of much of our industry. These misconceptions and myths were well
expressed by Anthony Hall over 10 years ago [Hall 1990]; many of his observations
are as fresh and relevant as if they were written yesterday. The truth about Formal
Methods, as always, lies somewhere between the extremes expressed by pundit and
critic. Formal methods have not proved to be a panacea (although this claim was
usually a straw man erected by critics rather than something seriously advanced
by enthusiasts). Neither have Formal Methods died. In fact they are widely used;
sometimes in a rather niche way; sometimes so routinely that they no longer attract
attention, and sometimes in disguise.

I hope to show that formality, whether or not it comes with the label “Formal
Methods” is alive and well and has a future. Indeed, if our industry is to rise to
the challenges of the 21st century, mathematical rigour, in some form, will have an
essential role to play (as it has in all other engineering disciplines).

For the rest of this paper I propose to abandon the capitalization of Formal Meth-
ods. In any case, this promotion to proper noun status is, I think, harmful in that it
somehow labels normal good engineering as “special”, “unusual” or just plain “dif-
ferent”. I will use the term formal simply to mean underpinned by mathematical
rigour (whether or not the mathematics is visible to the user). A formal method
(without the capitals) simply means a method underpinned by mathematical rigour.



2 An Historical Overview

The need for precise ways to interact with the fast but stupid machines we call
computers was recognised early in their life. In a 1948 University of Manchester
paper, Alan Turing noted “one could communicate with these machines in any lan-
guage provided it was an exact language” and “the system should resemble normal
mathematical procedure closely, but at the same time should be as unambiguous
as possible” [Hodges 1992]. Despite this early wisdom, the initial priority was for
productivity rather than precision. It was only at the beginning of the 1970s that it
became clear that the growing power of hardware and the availability of high-level
languages such as FORTRAN, meant that it was possible to construct systems that
exceeded our capabilities for specification, verification and validation. In his 1972
Turing Award lecture, Dijkstra observed: “The vision is that, well before the 1970s
have run to completion, we shall be able to design and implement the kind of sys-
tems that are now straining our programming ability at the expense of only a few
percent in man-years of what they cost us now, and that besides that, these systems
will be virtually free of bugs”. I think, in defence of Dijkstra’s reputation, we should
make it clear this was a vision not a prediction! We should also be clear, as observed
recently by Martyn Thomas [Thomas 2003], that 30 years after that lecture, we have
not even come close to achieving Dijkstra’s vision.

The Formal Methods (capitals intentional here) movement that really got under
way in the 1980s was just one of the responses to the growing software crisis. Other
responses included the development of Ada by the US DoD, to replace the poly-
glot chaos that they then endured (and are now rapidly returning to); the adoption
of static analysis by UK MoD certification agencies; and the production of new,
tighter standards such as Def Stan 00-55. My overwhelming recollection of each of
these events is the hostility they generated in much of the software industrial base. I
particularly recall the launch event and panel session at RSRE Malvern for Interim
Def Stan 00-55 where industry representatives queued up to explain that it wouldn’t
work, couldn’t be made to work and shouldn’t even be tried while at the same time
remaining silent on how else we might advance the software engineering cause.

These perversities may be explained by the “guru effect”. Since we have imper-
fect processes for producing software, we often rely on the exceptional skill of a
very few people to get things to work. These are people who, amongst other things,
happen to be able to work effectively with our imperfect processes. These people
soon get a reputation for their skill. When alternative approaches are mooted, to
whom does the manager turn for advice and guidance? These same experts. Are
these experts likely to recommend the adoption of techniques that may undermine
their status as company guru? No. They may recommend change but only to some-
thing they are comfortable with or which they find cool or interesting. In this sense,
the company-saving guru may also be its biggest obstacle to progress.

3 No Evidence?

Before describing the current situation and laying down some hostages to fortune for
the future, I would like briefly to address the suggestion that industry decided not to



adopt formal methods because a careful business analysis revealed little advantage
in it. If only that were true. I would even be happy to stop promoting precision,
rigour and formality if it were. The truth is that:

– our industry is highly prone to rejecting or adopting technologies without any
kind of analysis of their merits (witness the rush to object oriented methods or
to the UML); and

– such evidence as is available shows the adoption of formal methods to be very
largely advantageous.

As a motivator there follows a brief selection of formal methods successes. Note
that these are business successes as well as technical successes.

3.1 CDIS

The CCF (Central Control Function) Display Information System is rather an old
project now, it was delivered by Praxis to the UK CAA (Civil Aviation Authority)
in 1992. It rates a mention here because of relative novelty of the approach (at the
time) and the excellence of the results achieved. An abstract VDM model was pro-
duced along with more concrete user interface definitions. Code was produced from
progressive informal refinements of the abstract VDM model. The high-availability,
dual LAN was specified using CCS (Calculus of Communicating Systems). See
[Hall 1996] for a more detailed descrition of this project. End-to-end productivity
was the same or better than on comparable projects using informal approaches but
the delivered software had a defect rate of about 0.75 faults per kloc, approaching
an order of magnitude better than comparable ATC (Air Traffic Control) systems.
This extra quality was free. The CDIS system has been exceptionally trouble free in
over 10 years service.

3.2 Lockheed C130J

The Lockheed C130J mission computer software is a good example of formality
by stealth. The software specification was written in a tabular, functional form us-
ing the Software Productivity Consortium’s CORE notation [SPC 1993]. The code
itself was written in SPARK [Barnes 2003] and SPARK’s annotations were used
to bind the specification and code tightly together. The CORE specification looks
remarkably unthreatening but actually has clearly-defined semantics allowing the
automatic generation of test cases from it. SPARK is also rigorously defined and
leaves no hiding place for vagueness and ambiguity; indeed, a key benefit from its
use was the way it forced coders to challenge anything unclear in the specification
they were being asked to implement.

It might be thought that Lockheed were prepared to accept the obvious pain
that CORE and SPARK must have inflicted because of the extreme criticality of
the software under development. Actually, this view is quite wrong: there was no
pain. In fact the code quality improved (by one or two orders of magnitude over
comparable flight critical software) and the cost of development fell (to a quarter



of that expected)[Amey 2002]. The savings arose from the reduction in the very
expensive testing process associated with achieving Level A assurance against DO-
178B [RTCA 1992] and, in particular, the virtual elimination of retesting caused by
the detection and correction of bugs. Again we find that formality applied to the
development of systems both raises quality and reduces cost.

3.3 SHOLIS

The Ship Helicopter Operating Limits Information System provides existential proof
that Interim Def Stan 00-55 was a practical standard and could be followed without
exorbitant cost and with good results (even with tools and with computing power
that fall well short of their current equivalents). SHOLIS is a safety-related system
that determines whether a particular helicopter manoeuvre is safe for a given ship
in a particular sea and wind state. SHOLIS was specified in Z, coded in SPARK
and correctness proofs (technically partial proofs since termination was not proved)
used to bind the code and specification together. A survey of the project was carried
out in conjunction with the University of York [King 2000]. The project illustrates
both the power and the limitations of the formal methods used. On the positive side
the proof process was both tractable and cost-effective. In particular, proof effort on
the specification, before any coding effort had been expended, revealed many subtle
flaws that could have emerged later and been more expensive to correct. Overall,
proof—in terms of errors eliminated per man hour expended—was more effective
than traditional activities such as unit test. In fact the project provides good evidence
for abandoning comprehensive unit testing on projects where strong notations such
as SPARK and are used—a significant saving. No errors have been reported in the
SHOLIS system in sea trials and initial deployment.

Less positively, the system did experience (a few) late-breaking problems. Some
of these were found during acceptance testing and involved requirements that were
outside the formal model of the system represented by the specification. For exam-
ple, there was a requirement for the system to tolerate the removal and replacement
of arbitrary circuit boards during operation, something that clearly cannot be speci-
fied in Z. The main lesson here is to understand what is within and what is without
(outwith for Scottish readers) the formal system model and to take adequate verifi-
cation and validation steps for the latter.

3.4 MULTOS CA

Praxis Critical Systems developed the Certification Authority (CA) for the MUL-
TOS [MULTOS] smart card scheme on behalf of Mondex International. The ap-
proach taken is detailed in [Hall 2002a] and [Hall 2002b]. Unlike some of the other
example projects the MULTOS CA is security critical rather than safety critical
and was developed to meet the requirements of ITSEC E6, a security classifica-
tion broadly equivalent to SIL4 in the safety world [ITSEC 1991]. The system was
COTS based and incorporated C++ (for the user interface GUI); C (for interfaces to
specialized encryption hardware); an SQL database; Ada 95; and SPARK (for the
key security-critical functions).



The system specification was produced in Z and, with the full agreement of the
customer, was made the definitive arbiter of desired system behaviour. This agree-
ment was significant because Praxis offered a warranty for the system where any
deviation from the specified behavour would be fixed at Praxis’s expense; this would
have been much more difficult to agree if there was no rigorous description of the
system’s expected behaviour and therefore no common ground on which to agree
whether a warranty claim was justified.

A particularly striking feature of this project is the way that errors were usu-
ally detected very close, in time, to the point where they were introduced (see
[Hall 2002b]). There were very few cases where an error introduced early in the
lifecycle (for example, in the specification) remained undetected until late in the
lifecycle (for example, integration testing). This is a key property that distinguishes
systems developed formally (which can be reasoned about) from those developed in
a more ad hoc manner (and which can only be tested). A consequence of this early
error elimination—the very essence of the term “correctness by construction”—is
high productivity and low residual error rates. The MULTOS CA delivered an end-
to-end productivity—including requirements, testing and management—of 28 lines
of code per man day which is high for a SIL4 equivalent project. This high produc-
tivity was coupled with a residual error rate, corrected under warranty, of 0.04 de-
fects per KSLOC (about 250% better than the space shuttle software! [Keller 1993]).

Of particular note is the fact that the customer, who now maintains the system,
has adopted and maintained the formal specification because of its obvious value;
perhaps as a financial organization they are showing greater wisdom and less preju-
dice than the software world?

3.5 TCAS

Most, if not all, large commercial aircraft are now equipped with the Traffic Col-
lision Avoidance System (TCAS). Interestingly, the official specification for the
TCAS II system, sponsored by the US Federal Aviation Administration, is a for-
mal one, written in RSML (Requirements State Machine Language). Prior to its
adoption, the formal specification was produced by the Safety-Critical Systems Re-
search Group at the University of California, Irvine. A parallel effort by an industry
group to produce an English specification was abandoned because of the difficulty
of coping with the complexity of the TCAS function using an informal notation.

The adoption of the RSML specification has had some important benefits. In par-
ticular, it has been possible to check it for mathematical completeness and consis-
tency [Heimdahl 1996]. The widespread use of the specification has also spawned a
number of supporting tools including code generators, test-case generators and sim-
ulators; none of these would have been possible using an informal, English language
specification.

The TCAS example is very instructive: it shows that a formal specification can
be written for a system whose complexity defied expression in natural language and
that formal specification was usable by reviewers and implementors who were not
experts in the specification techniques used.



3.6 HDLC

My final example illustrates the use of model checking in the area of hardware
and in communication protocols—in this case a High-level Data Link Controller
(HDLC) being produced by Bell Labs in Spain. The controller was initially pro-
duced using traditional hardware techniques including VHDL backed by exten-
sive simulation. At a late stage, when the design was considered almost finished
and when the builders were confident of its correctness, the formal verification
team at Bell Labs offered to run some additional verification checks on the design
[Calero 1997]. The checks were carried out using the FormalCheck model checking
tool [DePalma 1996]. Very quickly, an error was detected that had eluded all the
hours of simulation to which the design had been subjected. At best the error would
have reduced throughput, more likely it would have caused lost transmissions. The
model checking also helped propose a correction and this correction was itself val-
idated using FormalCheck. Clearly much nugatory effort was avoided and model
checking now forms part of the standard design process at the site concerned.

Incidentally, this is far from being an isolated example of the commitment to
formal verification of hardware designs using model checking. Intel, for example,
are also committed users. See for example [Schubert 2003] whose paper includes
the significant words: “The principal objective of this program has been to prove
design correctness rather than hunt for bugs”.

4 But Everyone Uses Formal Methods!

The above examples show that the adoption of formal methods, in a variety of
forms, is highly cost-effective and can deliver a better quality product at a lower
cost (and probably to the greater satisfaction of its creators). Why then has industry
not adopted such rigour with the same enthusiasm that it shows for objects, UML
and automatic code generation? Despite the positive evidence we are constantly told
that no one is using formal methods now.

Well actually, everyone uses formal methods, or a least a formal notation, as
part of their development process; this comes as a surprise to many software engi-
neers but is nevertheless true. The end product of any software development process,
however chaotic, is a mathematically rigorous and precise description of some be-
haviour. That precise description is machine code and its precise meaning is defined
by the target processor which provides operational semantics for the language used.
The debate is not therefore whether to use formal notations and formal methods but
when to use them. In the worst case scenario, we achieve precision (another word
for formality) only when it is too late to help us. We have a formal specification of
our system but one that can only be animated rather than reasoned about. We are
forced to animate it, by testing, with all the disadvantages that brings, because we
have no other choice.

By contrast, earlier adoption of more formal notations has considerable merit.
We can start with specifications: the process of specification is finding a precise
way of recording some desired behaviour or property. We routinely regard the end



product of this process, the specification document, as being the most important
aspect of specification; however, the intangible benefits that accrue during its pro-
duction are at least as valuable. It is during the specification process that we can
discover the ambiguities, inconsistencies, lack of completeness and other flaws that
would eventually emerge as bugs. The more rigorous our approach to specification
the more quickly and more obviously these problems emerge. As Hall puts it “It is
hard to fudge a decision when writing formal specifications, so if there are errors
or ambiguities in your thinking they will be mercilessly revealed: You will find you
cannot write a coherent specification or that, when you present the specification to
the users, they will quickly tell you that you have got it wrong. Better now than
when all the programming money has been spent!” [Hall 1990].

We must therefore seek to understand why more formal approaches to software
development have not generated the unstoppable momentum of UML or visual pro-
gramming and, from this, find ways of injecting formality into the earlier stages of
the software lifecycle where it will do most good.

5 The Situation Today

I find it useful to draw analogies with other engineering disciplines, especially aero-
nautical engineering which was my original profession. By the time that aeronauti-
cal engineering had advanced beyond the craft stage it had acquired a mathematical
basis. For example, reasonable predictions of stress in components could be made,
but only by very highly skilled engineers working very hard with tools like slide
rules (that seem very primitive to us now). Today, stress calculations can be made
more easily by less senior engineers using more powerful tools. The crucial thing
here is that the mathematics has not been abandoned as too hard but encapsulated in
a more accessible and productive form.

I believe there is a strong analogy with formal methods but with a rather less sat-
isfactory outcome. Using the early methods such as VDM, B or Z, a highly skilled
engineer (akin to our senior stress man) could make a very rigorous prediction of
the behaviour of a software component. Unfortunately, because this was perceived
as hard, the response was not, as in the aeronautical world, to encapsulate the math-
ematics but to give up doing the calculations at all. To stretch the analogy, we might
liken UML to an engineer’s sketch pad. We can scribble an approximation of what
we want to build but we can’t analyse or measure it. We are reduced to building
it and then testing it to see if (or more usually, where) it breaks. This is well short
of the aeronautical equivalent where we may well still test a component but in the
expectation that it will not break because our calculations tell us it won’t. Citing
difficulty as the reason for the failure to adopt a more rigorous approach to software
is especially galling when you consider how much simpler is the mathematics of,
say, formal specification than that of stress or of compressible aerodynamic flows!

(In case anyone thinks this passing criticism of UML is unfair, let me quote Jos
Warmer of Klasse Objecten in the Netherlands: “In many cases, people simply have
their own interpretation, which is implicitly known by other people in their team,
project or department. The environment and background of the reader/writer of the



model determines its meaning. The consequence of this is that UML is a standard
notation, but without a standard meaning.”[Warmer 2003]).

5.1 Industrial Need

The failure to attempt a more rigorous approach to software development would not
matter if the performance of our industry was wholly to be admired. Regrettably
that is not the case. On any objective set of measures our industry paints a story of
failure. Cancelled systems, late delivery, poor performance and cost overruns are the
norm. Martyn Thomas [Thomas 2003] quotes figures from the Standish Group and
from the BCS that show:

The Chaos Report 1995
Projects cancelled before delivery 31%
Projects late or over budget or which deliver greatly reduced functionality 53%
Projects on time and budget 16%
Mean time overrun of projects 190%
Mean cost overrun of projects 222%
Mean functionality of intended system actually delivered 60%
BCS Review 2001
Success rate of 1027 projects 12.7%
Success rate of 500 development projects 0.6%

hardly a glowing testimony to a thriving industry!
The expectation of failure has become so entrenched that it has corroded the

entire basis on which contracts are offered and won. Those asking for a system to be
built ask for more than they either need or expect to get. Those bidding for the work
offer an unrealistically low price in the expectation that they will be able to deliver
less than the contract requires or that they will be able to force the price up when
there is an inevitable requirements change. The entire process is dishonest, leaves
both parties dissatisfied, further lowers future expectations and discriminates against
those professional organizations that are genuinely able to quote for and deliver the
requested system. In the end I think this cycle of dissatisfaction actively reduces the
amount of work available and may even be part of the cause for the downturn in
the software business; after all, given the high expectation of failure, why would a
potential customer seek to have anything built unless it was unavoidable? I suspect
many systems that could be replaced or updated to the benefit of their owners soldier
on precisely because of a lack of confidence that the replacement would be better or
even work at all.

5.2 The State of the Art, or The State of the Practice?

What has the above told us?

– Our industry does not have a good track record for delivering dependable sys-
tems at predictable cost;



– our industry has largely rejected the adoption of more formal methods; and
– formal methods, when tried, have had an overwhelmingly positive effect on

dependability and cost.

Put in that rather stark form it does suggest that formality has been unreasonably
neglected and that it should be revisited. Clearly much of what is trumpeted as
“state of the art” is actually no more than “state of the practice”. We are not failing
because of the inadequacies of computer science or because of the lack of applicable
techniques, we are failing because we are not using existing methods of proven
utility. As Edsger Dijkstra put it so elegantly in 1973: “Real-life problems are those
that remain after you have systematically failed to apply all the known solutions”.

6 The Future

So how can we move from the morass of sexy but semantic-free languages, point-
less but pervasive processes and multiplicities of meaningless metrics onto some
logically firmer ground? I think there are several possible routes.

6.1 Traditional Formal Methods

Traditional Formal Methods as typified by Z and VDM continue to be used and
research in this area continues. Currently there is interest in the modelling of systems
that exhibit a mixture of discrete and continuous behaviour. Another hot topic is
the construction of notations that encompass both model-based and process-based
behaviour.

The main problem with traditional Formal Methods remains one of perception
and prejudice. I have had some interesting conversations with potential clients which
have been proceeding very well until I have said something like: “we recommend
constructing a formal model of ...” at which point the aghast client manages to
combine all of Hall’s seven myths into a single sentence that usually finishes with
“couldn’t we use UML?”. In a similar vein, I know of a particularly savvy organi-
zation that produced a Z specification for a system but found that most of the imple-
mentors they offered it to wanted extra money because of the difficulty of dealing
with this unusual artefact; personally I cannot think of any easier or better start to
a project than to have a customer who knows exactly what they want and who can
express it precisely!

The MULTOS CA project tells us that non-specialists can be readily helped
to understand formal specifications and that the precision of such a specification
brings contracting and commercial benefits as well as the more obvious technical
ones. The production of a formal specification also potentially increases the power
of a system procurer since once such a specification exists it should be possible to
get the system constructed by one of several developers. By dividing a new project
up into separate requirements capture, specification and construction phases risk
can often be reduced. Non-formal approaches make it much more likely that the
entire process has to be let to a single organization as a single contract and removes



this more incremental option. For this reason alone, system procurers should not be
afraid of bidders who suggest using a formal approach.

Unlike a lot of heavyweight, tool-centric approaches, the adoption of formal
methods does not have to be done in a single big bang. Often it can be integrated
into an existing process. It can be used to specify the most critical part of a system
even if it is not adopted for everything. My experience is that even sketching out a
few key safety invariants in a rigorous manner can bring useful benefits.

6.2 Formality by Stealth

This is the area that I think offers the greatest promise. It continues the aeronautical
engineering analogy offered earlier by seeking to encapsulate mathematical rigour
in a user-friendly wrapper. When a mechanical engineer uses a CAD program to
perform a stress calculation on a model the tool will use rigorous mathematical
techniques such as finite element analysis to produce the result which it will then
display in a pleasant range of colours. Similarly, an aerodynamicist may explore
some new wing shape using a computational fluid dynamics system. Again, he will
get a visualization of fluid velocities and pressures but without direct visibility of
the families of partial differential equations that the system is solving to produce
them.

The growing popularity of model-based design notations such as UML and their
associated tools provides an opportunity (and a risk) here. If we can develop such
tools so that they become analagous to the finite element analysis and computation
fluid dynamic tools mentioned earlier then we can, potentially, move formality to
an earlier stage of the development lifecycle. One trend that might drive things in
this direction is automatic code generation. Since machine code is formal it fol-
lows that any attempt to generate code from a diagram imposes a semantic meaning
on that diagram. Unfortunately, if there is an ambiguous source language between
the diagram and the machine code then the connection is rather tenuous and the
imposed semantic meaning rather weak. In this case we are reduced to generating
code, testing it to see what it does and tweaking the diagram if it isn’t quite what
we want. The situation is a little different, however, when the generated source code
is unambiguous (see [Amey 2002] for a discussion of ambiguity in programming
languages). Here the implied meaning of the diagram is directly deducible from the
generated source code and so the diagramming language suddenly stops being se-
mantic free. We have seen this effect with a number of tool vendors who have sought
to generate SPARK from their design tools: the immediate effect is to force them
to be much more precise about what their various diagrams actually mean. (This
is exactly the same effect experienced on the Lockheed C130J where coders found
themselves unable to express ambiguous specifications). Potentially then, we can
find a sound semantics for, say, UML and then apply formally-based analysis to a
model expressed in it. That is the hope, and the UML2 initiative, which has raised
the emphasis on strong semantics, is a promising sign. There remains, however, the
danger is that we won’t even try to exploit stronger semantics for the UML. Instead
we will tolerate the vagueness of the diagramming notations used on the grounds



that code generation will let us get to test quickly and that testing will reveal any
problems; precisely the kind of late error detection we need to escape from if we are
to improve the state of the industry.

To avoid the negative outcome, users of code generation tools should challenge
their vendors to explain exactly what diagram-to-code mappings are used and ex-
actly what analysis can be performed at the model level.

6.3 Lightweight Formal Methods

The idea of lightweight formal methods was presented by Daniel Jackson at Formal
Methods Europe 2001 although the proceedings do not include a full paper on the
subject. An earlier version of his ideas is available on the web [Jackson 2001].

The concept of lightweight formal methods is that we are prepared to trade some
of the universality and precision of formal methods to make them easier to apply to
particular common problems and in common situations. The result is that we may
not be able to obtain the range and precision of results that a fully formal approach
offers but that we may instead get simpler and more rapid results for particular
classes of problems. Crucially Jackson is not advocating abandoning the mathemat-
ical rigour of formal methods but its selective deployment with appropriate approx-
imations. Perhaps this is analagous to the simplification that can be made to the
analysis of fluid flows at low speeds where we can ignore the effects of compress-
ibility. Our analysis is no longer universal or exact but it is much simpler and still
immensely useful for a common class of problem.

Lightweight formal methods overlap with formality by stealth. For example, the
Polyspace Verifier tool uses a mathematical technique called abstract interpretation
to produce an approximate model of part of the behaviour of a computer program.
The approximate model can produce useful results in the identification of potential
run time errors. The underlying mathematics places this tool in a different class from
the purely heuristic approach of, say, lint.

I have to admit to a slight scepticism with Jackson’s ideas. The mathematics
of computer software is so much simpler than that of aerodynamic flows that the
simplifications don’t always seem necessary (although simplifications may greatly
speed up some analyses and make them feasible in new situations). Furthermore,
for critical systems the failure to detect an error because it falls outside the approxi-
mate model being used may be unacceptable. There is for example a clear difference
between proof of the absence of run-time errors using SPARK (a fully-formal ap-
proach) and the static detection of some run time errors using Polyspace.

Perhaps lightweight formal methods have most to offer in non-critical systems
where an easily adopted approach that found many (but not all) common kinds of
error would have a very significant effect on the overall quality of software. For
critical systems, their main benefit might be in providing an initial “fast filter” that
catches common problems leaving more rigorous processes to eliminate the subtle
problems that this first pass misses.



7 Conclusions

Rumours of the death of formal methods are much exaggerated. The methods, in
their traditional form, are still being used by the more enlightened practitioners in
our industry. In particular, model checking has become an almost unremarked stan-
dard process in the design of computing hardware and in the area of communication
protocols. More significantly, formality by stealth, the encapsulation of rigour in a
less threatening wrapper, has started to make itself felt. Users of SPARK, for ex-
ample, are employing an unambiguous language with formally-defined semantics
supported by tools performing rigorous and exact analyses based on sound math-
ematical principles. But if you asked some of the SPARK users who are routinely
using proof techniques to show their code is free from all predefined exceptions,
whether they used formal methods they would probably say “no”.

Business thrives on precision. We expect our contracts to be accurate and subject
to a single interpretation and we employ expensive specialists to ensure that this is
so. We even use standardized forms of formal address in our correspondence: “Dear
Sir, yours faithfully” defines a form of interface and it is perhaps in component
interfaces that formality has most to offer most quickly as we move towards the
construction of systems from off-the-shelf components.

It is clear that the software industry should require the same precision and rigour
in the definition and construction of its primary product as it does in any of its other
activities. Don’t worry about whether something carries the label “Formal Method”
but do worry, a lot, about whether it is formal in the sense of being: precise, rig-
orous, exact, amenable to reasoning; or susceptible to analysis. If your suppliers
cannot satisfy you that their methods, however fashionable, meet these criteria then
they are falling short of currently achievable engineering standards; they are be-
ing unprofessional. If they claim their informally produced software is suitable for
use in a highly-critical system, then they are being dishonest as well as unprofes-
sional because such a claim cannot be sustained by dynamic test evidence alone
[Butler 1993][Littlewood 1993]. If you, the reader, are a software supplier how well
do you pass these tests?

The real benefit of a more formal approach is that it changes the software devel-
opment mindset from one of construct and debug to the more sensible correctness
by construction. Too often techniques such as static analysis are just seen as new
and different ways of finding bugs; only formal methods—and tools based on for-
mal methods—offer a route to avoiding the bugs in the first place.

References

[Amey 2002] Peter Amey. Correctness by Construction: Better Can Also Be Cheaper.
CrossTalk Magazine, March 2002.

[Barnes 2003] John Barnes. High Integrity Software - the SPARK Approach to Safety and
Security. Addison Wesley Longman, ISBN 0-321-13616-0.

[Butler 1993] Butler, Ricky W.; and Finelli, George B. The Infeasibility of Quantifying the
Reliability of Life-Critical Real-Time Software. IEEE Transactions on Software Engi-
neering, vol. 19, no. 1, Jan. 1993, pp 3-12.



[Calero 1997] J Calero, C Roman and G D Palma. A practical design case using formal
verification. In Proceedings of Design-SuperCon97.

[DePalma 1996] G. DePalma and A. Glaser 1996. Formal verification augments simulation.
Electrical Engineering Times 56.

[Hall 1990] Anthony Hall. Seven Myths of Formal Methods. IEEE Software, September
1990, pp 11-19.

[Hall 1996] Anthony Hall. Using formal methods to develop an ATC information system.
IEEE Software 13(2): pp 66-76, 1996.

[Hall 2002a] Anthony Hall. Correctness by Construction: Integrating Formality into a Com-
mercial Development Process. FME 2002: Formal Methods - Getting IT Right, LNCS
2391, Springer Verlag, pp 224-233.

[Hall 2002b] Anthony Hall and Roderick Chapman. Correctness by Construction: Develop-
ing a Commercial Secure System. IEEE Software January/February 2002, pp 18-25.

[Heimdahl 1996] Heimdahl M. and Leveson N. Completeness and consistency in hierachi-
cal state-based requirements. IEEE Transactions on Software Engineering SE-22, June
1996, pp 363-377.

[Hodges 1992] Quoted in: Andrew Hodges. Alan Turing: The Enigma. Vintage, Random
House, London, ISBN 0-09-911641-3 or Walker & Co., New York, ISBN 0-802-77580-
2.

[ITSEC 1991] Information Technology Security Evaluation Criteria (ITSEC). Provision
Harmonised Criteria, Version 1.2, June 1991.

[Jackson 2001] See sdg.lcs.mit.edu/˜dnj/pubs/ieee96-roundtable.html
[Keller 1993] Keller. T.W. Achieving error-free man-rated software. 2nd international con-

ference on Software Testing, Analysis and Review, Monterey, California, 1993.
[King 2000] Steve King, Jonathan Hammond, Rod Chapman and Andy Pryor. Is Proof More

Cost Effective Than Testing?. IEEE Transactions on Software Engineering Vol 26, No 8,
August 2000, pp 675-686

[Littlewood 1993] Littlewood, Bev; and Strigini, Lorenzo. Validation of Ultrahigh Depend-
ability for Software-Based Systems. CACM 36(11): 69-80 (1993)

[MULTOS] See www.multos.com
[RTCA 1992] RTCA-EUROCAE. Software Considerations in Airborne Systems and Equip-

ment Certification. DO-178B/ED-12B. 1992.
[Schubert 2003] Tom Schubert. ‘High Level Formal Verification of Next-Generation Micro-

processors. Proceedings of 40th Design Automation Conference. ACM Press June 2003.
[SPC 1993] Software Productivity Consortium. Consortium requirements engineering

guidebook. Technical Report SPC-92060-CMC version 01.00.09.
[Thomas 2003] Martyn Thomas. The Modest Software Engineer. Presention at Software Re-

liability and Metrics Club, London on 20th May 2003.
[Warmer 2003] Jos Warmer. The future of UML.

http://www.klasse.nl/english/uml/uml2.pdf


