context in which atool implies a caresponding model elenent ard a Steretype
representd by the ion. The elenent and the steeaype have the steeotype
relationship.

Part 5 - Static Structure Diagrams

3.19 ClassDiagram

Classdiagrams show the static structee o the nodel, in paticular, the things that exist
(such as classeand types),their intemal structure, andtheir relationships to other
things. Clas diagams do not show temporal information, although they may contain
reified occurrencesof things that have or things that desribe temporal behavior. An
object diagram shaws instarces canpatible with a particular class diagam.

This sectiondiscisses classes atitkeir variations, including tenplates and instantiated
classes, ad the relationships bdweenclasss (association and generalization) andthe
contents of classes (attibutes andoperations).

A class diagram is a graph of Classifer elements conectedby their various static
relationships. Note thata “class” dagmam may also containinterfaces, @mckajes,
relationships, and even instanes, suchas ohects am links. Perhaps a letter nane
would be “ static structural diagram” but “classdiagrani is shorter and well
establisled.

3.19.1 Semantics

A class dagram is a gaphic view of the static strudural madel. The indvidual class
diagrams do not represert divisions in the underlying model.

3.19.2 Notation

A classdiagam is acollection of (static) dedaraive nmodel elemerts, sud as clas®s,
interfaces, ad their relaionships, comected & a graphto each dher and to thear
contents. Class diagams may be organizedinto padkages either with their underlying
models or as separate packages that build upon the underlying model packages.

3.19.3 Mapping

A classdiagram doesnot necessalily match a single ssmantic entity. A package withn
the static strictural model may be represernied by one or more class diagams. The
division of the presenation into separatediagramsis for graphical convenience ard
does nd imply a partitioning of the model itself. The conterts of a diagam map into
elementsin the static semantic model. If a diagram is part of a package, therits
contents map into elementsin the same package (including possble references to
elements accessed oimported from other packages).

OMG-UML V13 ClassDisgram March 2000 3-31

3

3.20 Object Diagram

An object dagram is a gaph of instarces, irtluding objects anl data values. A static
object diagramis an instane of a class digram; it shows a srapstot of the ddailed
state ¢ asystemat a pint in time. The use o object diagramsiis fairly limited, mainly
to show examples o data structures.

Tools neal not support a separate format for object dagrams. dass diagams can
contain objects, so aclass diagam with objects and no classess an “object diagam.”
The phrase is usefll, however, to characteize a particular usage acievable in various
ways.

3.21 Classifier

Classifier is the metamodel superclass d Class, DataType, ard Interface. All of these
have similar syntax ard ae therdore all rotated wsing the ectamgle symbol with
keywords usedas neessaryBecaise classes areast canmon in diagrams, a
rectargle without a keyword represerts a class andthe other subclasses d Classifier
are indicated with keywords. In the sections that follow, the discussion will focus on
Class, but most of the notation apgies to the other element kinds as semantically
appropriate andas described later under their own sections.

3.22 Class

A class is the descriptor for a sd of objects with similar structure, behavior, and
relationships. The nodel is corcernedwith describirg the intention of the dass that is,
the rules that define it. The run-time execution provides its extension, that is, its
instances. UML provides naation for declaing classesand specifying their properties,
as well & using classes invarious ways. Some modeling elements that aresimilar in
form to classeqsuch as interfaces, sigals, a utilities) are notated using keywords on
class synbols; some o these areseparate mdamadel dasss ard sane ae steretypes
of Class. Qasses are delared in classdiagrams andused in mest other diagrams. UML
provides a gaphical notation for declaring and using classes, as well as a te¢ual
notation for referencing clasgs within the descriptios d other nodel elenerts.

3.22.1 Semantics

A class represerts a concept within the sydem being modeled. Classes lave data
structure ard behavior and relationshipsto other elements.

The nane of a clasdhas scpe within the pakage in whid it is declaed and the name
must be unique (anong classnanes) within its package.

3-32 OMG-UML V1.3 March 2000

3.22.2 Basic Notation

3.22.2.1

A class is drawn as a solidoutline rectande with three mmpartments sparated by
horizontal lines. Tke tgp name mmpartmert hdds the class namard cther genera
propetties of the dass(including stereotype); the middle list compartment hdds a list
of attributes; the battom list compartment holds a list of operations.

See Section 3.23, “N ame Compartmert,” on page 3-35 and Section 3.24, “List
Compartment,” on page 3-35 for more details.

References

By default a dass shavn within a packag is assumed to be defned within that
package.To show a reference toa class déined in anaher package, use the syrtax

Package-name::Class-name

as the name string in the name compartment. A fu ll pathname can be specfied by
chainirng together package nanes sepagted by double colons (::).

3.22.3 Presentation Options

Either or both of the attibute and operation conpartments may be sippressed. A
separator linés not drawn for a missing compartment. If a compartmentis suppressed,
no inference canbe drawn abaout the preserce o absen@ of elements in it.
Compartmert names carbe usedto remove amhiguity, if necessary (Section 3.24, “List
Compartment,” on page 3-35).

Additional compartmentsmay be sypplied as atool extension to show other preddahed
or user-defined model properties (for example, to show businessrules, responsibilities,
variations, events handled, exceptions raised and soon). Most compartments ae
simply lists of strings. More complicated formats ae possble, but UML does rot
specify such formats; they are a tool responsibility . Ap pearance of eachcompartment
should preferably be implicit basedon its contents. Canpartment names may be used,
if needed.

Tools may provide oter ways to show class referencesand to distinguish them from
class declamtions.

A class symbol with a stereotype iconmay be “collapsed” to show just the steeaype
icon, with the nane of the class either insié the class or belav the icon. Other
contents of the class are sppressed

3.22.4 Syle Guidelines

® Center class name in boldface.

® Certer keyword (including stereatype names) in plain face within guillemets above
class name.

® Begin dassnames with anuppercase lette

OMG-UML V1.3 Class March 2000 3-33

3-34

® Left justify attributes andoperations in plain face
® Begin atribute andoperation nanes with a lovercase letter

* Show the nanes of abstrad classes orthe sigratures ofabstract operations in italics.

As a tod extension, bddface may be used for narking gecial list elenents (for
example, to designate candidate keys in a daabas design). This might encode some
design property modeled asa tagged value, for example.

Show full attributes andoperations when neededand suppress themin other contexts
or references.

3.22.5 Example
Window
. {abstract,
Window author=Joe,
status=tested}
+size: Area = (100,100)
#visibility: Boolean = invisible
Window +default-size: Rectangle
#maximum-size: Rectangle
size: Area -xptr: XWindow*
visibility: Boolean -
+display ()
. +hide ()
dicplay 0 +create ()
-attachXWindow(xwin:Xwindow*)

Figure3-17 Class Ndation: Details Suppressel, Analysis-level Details,
Implementation-level Details

3.22.6 Mapping

A class synbol mags into a dassdemer within the pa&age that avns tre diagam.
The nane compartment cantents nmap into the dassname and into propetrties of the
class (built- in attributes a tagged values). The attribute conpartment maps into a list
of Attributes d the Class The operation compartment maps into a list of Opemations of
the Class.

The property string {lo cation=pame} maps into an implementationLocatian assaciation
to a Component. The name is the nane d the cantainng Componen.

OMG-UML V1.3 March 2000

3.23 Name Compartment

3.23.1 Notation

The rame @mpartmert dispays tre nane d the class anather properties inup to
threesections:

An optional stereotpe keyword may be placed above the class nane within guillemets,
and/or a stereatype icon may be placedin the upper right corner of the compartment.
The steeotype name must not matcha predefined keyword.

The name d the class apeas net. If the class is absdct, its rame aears initalics.
Note that any explicit specificaion of generdization statustakes preceence over the
name font.

A list of strings dermting properties (metanodel attibutes @ tagged values) may be
placedin braces belav the class nae. The list may show class-level attributes for
which there is no UML n otation and it may also stow tagged values. The preserte o
a keyword for a Boolean type without a value implies the value true. For exanple, a
led class shars theproperty “{leaf}”.

The steeaype and property list areoptional.

«controller» @

PenTracker

{ leaf, author="Mary Jones"}

Figure 3-18 Name Compament

3.23.2 Mapping

The cortents o the name conpartment map into the nane, stereotype, and various
properties of the Class repesented by the class synbol.

3.24 List Compartment

3.24.1 Notation

A list compartmenthalds a list ¢ strings, eachof which is the enoded represetation
of a featue, such as an dtribute or operation. The stiings are preserted one to aline
with overflow to be handled in a tool-dependnt manner. In addition to lists of
attributes a operaions, optional lists canshow other kinds of predefined or user-
definedvalues,such as respasibilities, rules, or nodification histories. UML does rot
define these optional lists. The manipulation of user-defined lists is tod-depement.

OMG-UML V1.3 Name Compartment March 2000 3-35

3-36

3.24.1.1

3.24.1.2

The itansin the list areordered and the order nay be modified by the user. The order
of the elenents is meaningful information and must be accessilbe within tools (for
example, it may be used by a code generator in generatig a list of declarations). The
list elementsmay be presented in a different order to achieve some other purpose (for
example, they may be sorted in sme way). Evenif thelist is sorted,the items maintain
their origina order in the underlying model. The ordering information is merely
swppressedn the view.

An ellipsis (.. .) as the final elerrent of a list or the final elenent of a delimited
sectionof a list indicates thet additional elenentsin the model exist that meet the
seledion condition, but that are nat shown in that list. Such elementsmay appearin a
different view of the list.

Group properties

A property string may be stown as anelement of the list, in which caseit applies to all
of the sicceedng list elements wntil another property string appeas as a list element.
This is equivalent to attaching the property string to eachof the list elements
individually. The property string does not designate a mald elemert. Exanples d this
usage include indicating a steretype and specifying visibility . Keyword strings may
also ke usedin a similar way to qualify subsequent list elemerts.

Compartment name

A compartment ey dispay a nane to indicate which kind of compartment it is. The
name is dsplayed in a distinctive font centered at the top of the campartment. This
capability is useful if some compartmernts are omitted or if addtional userdefined
compartments ae added. For a Class, the predefined compartmerts arenamed
attributes and operations. An examge o a user-defined compartment might be
requirements. The name compartment in aclass must always be pesent;therefore, it
does nd require or permit a compartment name.

3.24.2 Presentation Options

A tool may present the list elenents in a sorted order in which case the inkerent
ordering of the elements is not visible. A sort is based on some internal property and
does nd indicate addtional model information. Exanple sat rules include:

® alphabetical order,
® ordering by stereotype (such as constructors, destructors, then ordinary methods),
® orderingby visibility (public, then protected, therprivate).

The elamnentsin the list may be filtered acording to some selection rule. The
specification of selection rules is a tal responsibility . The absewe of items from a
filtered listindicates ttat no elements neet the fiter criterion, but no inference canbe
drawn about the presene or abserte of elemerts that do not meet the criterion.
However, the ellipsis notation is available to show that invisible elementsexist. It is a

OMG-UML V1.3 March 2000

3

toadl responsibility whether and how to indicate the presence of eitherlocal or global
filtering, although a staml-alone dagramshould have some indication of suchfiltering
if it is to be understandable.

If a conpartment is syppressedno inference canbe dawn aout the pesere or
absene of its elemerts. An empty compartmert indicates ttat no elements mest the
seledion filter (if any).

Note thet attributes may also ke shown by compostion (see Figure 3-360n page3-75).

3.24.3 Example

Rectangle

pl:Point
p2:Point

«constructor»
Rectangle(p1:Point, p2:Point)
«query»

area (): Real

aspect (): Real

.«ijbdate»
move (delta: Point)
scale (ratio: Real)

Figure 3-19 Stereotpe Keyword Applied to Groups of List Elemens

OMG-UML V1.3 List Compartment March 2000 3-37

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

bill no-shows
match to available rooms

exceptions

invalid credit card

Figure 3-20 Comparimens with Names

3.24.4 Mapping

The entris in a list conpartment map into a list of ModelElenents, ore for eat list
entry The adering of the ModelElements metches tle list compartment entries (unless
the list canpartment is sorted in some way). In this case, noimplication about the
ordering of the Elements can be made (the ordering can be seen by tuming off sorting).
However, a list entry stringthat is a stemtype indication (within guillemets) or a
property indication (within braces) dees nd map into a separate ModelElement.
Instead, the coesponding property applies to ead subseqient MadelElenent until the
appeararce o a different stand-alone steeatype or property indicata. The property
specifications are conceptially duplicated for eac list Element, althaugh a tool might
maintain an irtemal mechanisn to store or nodify them together. The presence of an
ellipsis (“...”) as a list ertry implies that the senantic model containsat least ;e
Element with correspnding properties that is nat visible in the list compartment.

3.25 Attribute

Stringsin the attribute compartment are usedo show attributes inclasses.A similar
syntax is used to specify qualifiers, tenplate paraneters, operation parameters, and so
on (some of these onit certain terms).

3.25.1 Semantics

Note that a attribute is semantically equivalent to acomposition asseiation; however,
the intent and usage is normally dif ferent.

3-38 OMG-UML V1.3 March 2000

3

The type of an attributeis a TypeExpression. It may resdve to a class nane or it may
be complex, suchas array[String] of P oint. In ary casethe details o the attribute
type expressions are na spedfied by UML . They deperd on the expressionsyntax
swpported by the paticular spedfication or programming language being used.

3.25.2 Notation

An attribute is shavn as a tet sting that an be @rsed irio the various properties of
an attibute model element. The deéult syntaxis:

visibility name [multiplicity] : type-expression = initial-value { property-string }
® Where visihility is one of:

+ public visibility

protected visibility

- private visiblity

The vigbility m arker may be suppressed. The almhce of a visibility marker
indicaes that the visbility is nat shovn (not that it is urdefined or public). A toal
should assign visibilities to new attributes even if the visibility is not shown. The
visibility m arker is a shorthand for a full visibility property specification sring.

Visibility m ay also ke spedfied by keywords (public, protected, private). This form
is used prticularly when itis used as aninline list elerrent that apfies toan entire
block of attributes.

Additional kinds of visibility might be deifned forcettain programming languages,
sud as G+ implementation visibility (actually all form s of nonpublic visibility are
language-depndent). Suchvisibility must be sgcified by property stiing or by a
tool-specific convention.

® Where name is an icentifier string that represents the rame of the attribute.

® Where [multiplicity] shows the multiplicity of the attribute (Secion 3.42,
“Multiplicity ,” on page 3-68). The term may be omitted, in which case the
multiplicity is 1..1 (exactly one).

® Where type-expression is a languiage-depndert specification of the inplementatian
type of an attribute.

® Where initial-value is a langiage-dependert expression for the initial value of a
newly created adbject. The initial value is optional (the equl signis also omitted).
An explicit constructa for a new object may augment or modify the default initial
value.

® Where property-string indicates poperty values tha apgy to the element. The
property string is optional (the braces ae omitted if n o propetrties arespecified).

A class-scope attribute is shovn by underlining the name and type expressio string;
otherwise, the attibute is instance-scope.

class-scope-attibute

OMG-UML V1.3 Attribute March 2000 3-39

The natation justification is that a class-scope attribute is an instance value in the
execuing system, just as anobject is aninstarce value, so both may be designatedby
underlining. An instancescope attribute is not underlined; that isthe default.

There is nosymbol for whether an dtribute is clangeable (the default is chaageabe).
A nonchangeable attritute is specified with the property “{fr ozen}.”

In the absnce of amultiplicity in dicator, an attribute holds exadly 1 value.
Multiplicity may be indicated by pladng a multiplicity ind icator in brackets afte the
attibute name, for example:

colors [3]: Color
points [2..*]: Point

Note that a multiplicity of 0..1 provides for the possbility o f null v aues: the abence
of avalue, as qposedto a particular value from the range. For example, the following
declaation permits a distinction between the null value ard the empy stiing:

name [0..1]: String

A stereaype keyword in guillemets prececks the entire attritute string, including ary
visibility indicatas. A property list in braces fdlows the rest of the attribute string.

3.25.3 Presentation Options
The type expression may be syppressed(but it has a \alue in tre nodel).

The initial velue may be supressedandit may be absent fom the model. It is a tool
responsibility whether andhow to show this dstinction.

A tool may show the visibility in dicationin a different way, suchas ly usng a special
icon or by sorting the elements by group.

A tool may show the individual fields d an attribute as colunns rather thana
continuous string.

The syntax of the attribute stiing can be tha of a particular programming language,
such as C++ or Snalltalk . Specific tagged properties may be included in the string

Particular attributes within a list may be sippressed (seeSection 3.24, “List
Compartment,” on page 3-35).

3.25.4 Syle Guidelines

Attribute rames typically begin with a lavercase letter Attribute names are in pain
face.

3-40 OMG-UML V1.3 March 2000

3.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

3.25.6 Mapping

A string entry within the attribute conpartment maps into an Attribute within the Qass
correspading to the class synbol. The properties of the atribute map in accadance
with the preceding desciiptions. If the visibility is abser, then no conclusion can be
drawn abou the Attribute visibilities unless a filter is in effect (e.g., only public
attributes siown); likewise, if the type or initial value are omitted. The anission of an
underline aways indicates an irstancescope attribute. The omission of multiplicity
derotes a multiplicity of 1.

Any propetrties spedfied in bracesfollowing the attribute string mapinto propertieson
the Attribute. In addition, any properties sgecified on a previous stand-alore property
specification entry apply to the current Attribute (and to others).

3.26 Operation

Entries in the operaion campartment ae strirgs thet shav operaions defined m
classes andmethods suyplied by classes.

3.26.1 Semantics

An operaion is a senice that aninstarnce o the class may be requestedto perform. It
has a nhane aml alist of argumerts.

3.26.2 Notation

An operation is shevn as atext stiing that can be parsed intihe \arious properties d
anoperation model emern. The default syntaxis:

visibility name (parameter-list) : return-type-expression { property-string }
® Where visibility is one of
+ public visibility
protected visibility
- privatevisibility

The visbility marker may be suppressed. The absce of a \isibility marker
indicaes that the visbility is nat shovn (not that it is urdefined or puwlic). The
visibility m arker is a shorthand for a full visibility property specification string.

OMG-UML V1.3 Operation March 2000 341

3-42

Visihility m ay also ke spedfied by keywords (public, protected, private). This form
is used particularly when itis used as aninline list elerrent that apfies toan entire
block of operations.

Additional kinds of visibility might be deifned forcettain programming languages,
sud as G+ implementation visibility (actually all form s of nonpublic visibility are
language-depndent). Suchvisibility must be sgcified by property string or by a
tool-specific convention.

® Where name is an icentifier string.

® Where return-type-expression is a larguage-depenant spedfication of the
implemertation type or types of the &lue returnedby the operation The colon and
the reaurn-type areomitted if the operation does not return a value (as for C++
void). A list of e xpressiors may be supplied to indicate multiple return values.

® Where parameter-list is a canma-se@rated list o formd paameters,eachspeified
using the syntax:

kind name : type-expression = default-value
* wherekind is in, out, or inout, with the defallt in if absent.
* wherename is the rmme of a famal paameter.
* wheretype-expression is the (laguage-depedent) sgcification of an
implementation type.
* wheredefault-value is an @tional value expressia for the paranater, expressed
in and subject to the limitations of the eventual target language.

® Where property-string indicates poperty values tha apgy to the element. The
property string is optional (the braces ae omitted if n o propetrties arespecified).

A class-scope operaion is shavn by underlining the nane and type expressim string.
An instancescope operéaion is the default and is not marked.

An operation that doesnot modify the system state (onethat has no side effects) is
specified by the property “{ query};” oth erwise, the geration may alter the system
state,although there is no guarantee tat it will do so.

The cancurrerncy sematics of anoperation ae sgecified by a property string of the
form “{c oncurrency = name}, where name is one of the nanes: sequential, guarded,
concurrent. As a shathand, oneof the names may be used by itsdf in a property stiing
to indicatethe corregponding concurrency value. In the abserce o a speification, the
concurrency semaiics are urspedfied and must therefore be assumedto be sequertial
in the worst case.

The tgp-most apearance d an operation signature declares the operatian on the class
(and inherited by all of its descenderts). If this class dces nd implemert the operation
(i.e, does nd supply a method), then the operation may be marked as “{abstract}’ or
the @eration signature may be italicized to indicate that it is abs$ract. A subordinate
appeararce of the operation sigrature without the {abstract} property indicates that the
subordinate dassimplementsa method on the operation.

The adual text or algorithm of a method may be indicated in a note atached to the
operation ertry.

OMG-UML V1.3 March 2000

3

If the ohjects o a class acept and respond to a given signal, an operation entry with
the keyword «signal» indicates that the class accpts thegiven signal. The syntax is
identical to that of an operation. The response d the ohject to the recegion of the
signal is shown with a statemachine. Among other uses, this rotation can stow the
response of oljects of a dassto eror corditions aml exceptians, whichshauld be
modeded as sigrals.

The spcification of operationbehaior is given asa rote attabed tothe ogeration.
The text of the spedfication should be endosedin bracesif it is a formal specification
in same language (a serantic Constraint); otherwise, it should be plain text if it is just
a naturallanguage descriptionof the behavior (a Comment).

A stereotype keyword in guillemets preaedes the entire geration string, including ary
visibility indicatas. A property list in braces fdlows the entire operation string.

3.26.3 Presentation Options

The agument lig and return type rmay be syppressed (togetter, na separaty).

A tool may show the visibility in dicationin a different way, suchas ly usng a special
icon or by sating the elements by group.

The synax of the @eration sighature string canbe that o a particular progranming
language, seh as C++ or Snalltalk . Specific tagged propertiesmay be included in the
string.

A method body may be shavn in a rote attabed tothe ogeration entry withn the
compartment (Figure 3-21). The line is drawn to the stringwithin the compartment.
This approach is wseful mainly for showing small method bodies.

PoliceStation

alert ()

1 station

BurglarAlarm

isTripped: Boolean = false

{ifisTripped
then station.alert(self)}

Figure 3-21 Note shaving metod body

OMG-UML V1.3 Operation March 2000 3-43

3.26.4 Syle Guidelines

Operdion names typically begin with a lowercase lette. Operation names are in plain
face. Analstract goeration may be shavn in italics.

3.26.5 Example

+display (): Location

+hide ()

+create ()
-attachXWindow(xwin:Xwindow*)

Figure 3-22 Operaton Listwith a Variety of Operatons

3.26.6 Mapping

A string entry within the operation conpartment maps into an Operatioror aMethod
within the Classcorrespnding to the dasssymbol. The progerties of the operaion
map in accadance withthe peceding descriptions. See th descrigtion of “Attribute”
on page 3-38 for additional details. Parameterswithout keywords map into Parameters
with kind=in, otherwise acording to the keyword. Return value namesmay into
Parameters with kind=return.

If the enry has tle keyword «signal», thenit maps into a Reception on the Class
instead.

The tgpmost gpearance of anoperation spedfication in aclass herachy maps into an
Operdion definition in the correspanding Class a Interface. Interfaces do not have
methods. In a dass, eeh gpearace of anoperation ertry magos irnto the preserce d a
Method in the mrrespnding Class unless tle operation entry conains the {abstract}
property (including use d convertions such as italics for abstract gerations). If an
abstract gperation entry appears within a hierachy in which the sane operation has
alread/ beendefinedin an ancesta, it has no effect but is not an error unless the
declamtions areinconsistent.

Note thet the operation string entry does not specify the body of a method.

3.27 Typevs. Implementation Class

3-44

3.27.1 Semantics

Classesan be stereotypedas Types or Implementatian Classes (altbugh they canbe
left undifferentiated as well)A Type is sed tospecify a domain of ohjects together
with operaions applicalle to the dbjects without defining the physical implementation
of those objects. A Type may not include ary methods, but it may provide behavioral
specificationsfor its operatiors. It may also have attributes andassaiations that are
defined soldy for the purpose of specifying the behavior of the typé€'s operations and
do not represert any actual implemenrtation of state dda.

OMG-UML V1.3 March 2000

An Implementdion Class déines the physical data structure (for attributes and
assaiations) andmethods of an dbject as implementedin traditional languages (eg.,
C++, Smalltalk). An ImplementationClass is said taealize a Type if it provides allof
the operations definedfor the Type with the sane behavior as specified for the Type's
operations. An Implementaion Class mg realize anumber of different Types. Note
that thephysical attributes and asswations of the Implementation Classdo not have to
be the same as thaose of ary Type it redizes ard that the Implementation Class may
provide methods for its operations in terms of its physical atributes andassaiations.

An obectmay have at mast ore Implemerntation Cass, sioe ths specifies thephysical
implemenrtation of the olject. Howvever, an dyject may conform to multiple different
Types. If the object has an Implementation Class, tten that Implementation Class
shauld realize the Types to which the object conforms. If dynamic classification is
used, then the Types to which an object conforms may actually change dynamicaly. A
Type may be usedin this way to charecterize a changeable role that anobject may
adopt and later abandon.

Although the use of types andimplementation classes iglifferert, their internal
structure is the same ad they are both classifiers d objects. Therefore they are
modeledasstereotypes d classes. As such, they both fully support the usual
gereralization/specidization andthe inheritance of attributes,asciations, and
operations. Note, hawever, the types may only specializeother types and
implementation classes may only specialize other implementation classesTypes am
implementation classes caibe related anly be realization.

3.27.2 Notation

An undifferentiated class ishown with no stereotyp. A type is $iown with the
steeotype “«ty pe»’. An implementaton classis shown with the steeotype
“«implementationClass»” A tool is alsofree to allev a deéult settingfor an entire
diagram, in which case all of the classymbols without explicit stereotype indications
map into Classes withthe default stereotype. This might be useful for a model that is
close tothe progamming level.

The implementation of a type by a class ismodeled as tle Realization relationship,
shavn as a dashedline with a solid triangular arrowhead (a dashed “generalization
arow”) . This symbol implies the raalizing class prosides at leat all th e operations of
the Type, with conforming behavior, but it doesnot imply inhelitance o structure
(attributes or assoiations). The generaliation hierarchy of a set of classs frequently
pardlels the gereralization hierarchy of a set of types that they redize, but this is not
mandatoty, as lomg as eachclassprovides the gerations of the types that it realizes.

OMG-UML V1.3 Typevs. Implementation Class March 2000 3-45

3.27.3 Example
«type» «implementationClass»
Object HashTable
* elements 1 body
«type» «implementationClass»
Set <t ------ HashTableSet
addElement(Object)
removeEIement(Object) addElement(Object)
testElement(Object):Boolean removeElement(Object)
testElement(Object):Boolean
setTableSize(Integer)

Figure 3-23 Notation for Types andimplemeration Classes

3.27.4 Mapping

A classsymbol with a steeaype (including “type” and“implementationClas$) maps
into a Gass with tle carespamding steredype. A classsymbol without a steretype
maps into a Class withthe default stereotype for the diagram(if a default has been
definedby the modeleror tod); otherwise, it maps intoa Class with no stereotye. The
realizationarrow between tvo symbols maps into an Abstraction relationship with the
«redize» steeaype beween tle dassifers carespading to the two symbols.
Realizdion is usually used betweena class anéninterface, but may alsobe sed
between any two classifiers to show conformance of behavior.

3.28 Interfaces

3.28.1 Semantics

An interface is a sgcifier for the externally-visible operations d a class, copponent,
or other classifier (including subsystems) without specification of intemal structure
Each interfface dten speifies aly a limited pat of the bénavior of an atual dass

3-46 OMG-UML V1.3 March 2000

Interfaces do not have implementation. They lack attributes, states, or assgiations;
they only have operations. (An interface may be the tamet of a one-way assaiation,
but it may not have an as®ciation that it can navigate) Interfaces may have
generalization relationships. An interface is famally equivalent to an abstract dass
with no attributes andno methods and only abstract ogeraions, but Interface is a peer
of Classwithin the UML metamodel (both are Classfiers).

3.28.2 Notation

An interface is a Classifier and may be shown using the full rectargle symbol with
compartments and the keyword «interface». A list of operations supported by the
interface is pacedin the operation compatment. The attribute conpatmert may be
omitted becalse it is always enpty.

An interface may also be displayed as a small circle with the name of the interface
placedbelow the symbol. The circle may be attacted by a solid line to classifiersthat
support it. This indicates thathe dassprovides all of the operations in the interface
type (and possilly more). The operations provided are not shovn on the circle

notation; use the full rectange symbol to slow thelist of operations. A class that uses
or requires the erations supplied by the interface may be attached tahe circle by a
dashed arow pointing to the circle. The dasled arrow implies that the dassrequres ro
more thanthe operaions specified in the irterface; tke client class is nbrequired to
adually use all of the interfaceoperdions.

The Realization relationship from a classifier to an irterffacethat it sypports is shavn
by a dasted line with a sdid triangular arrowhead (a‘dashed gereralization symbol”).
This is the sane notation used to indicate ealizion of a type by animplementation
class. In fact, this symbol can be used betweenany two classifier symbols, with the
mearing that the client (the ore a the tail of the arow) supports at least all of the
operations defined in the sugplier (the one at the tead of the arrow), but with no
necessityto support ary of the data structure of the sugplier (attributes and
assaiations).

OMG-UML V1.3 Interfaces March 2000 3-47

3.28.3 Example
Hashable
String L e —]
* HashTable
isEqual(String):Boolean _contentOs - —

hash():Integer

Comparable -
7

~ e
AN e
N 7 «use»
~

7
e
2\ z
«interface»
Comparable

isEqual(String):Boolean
hash():Integer

Figure 3-24 Interface Notation on ClassDiagram

3.28.4 Mapping

A class rectargle symbol with steredype «interface», or a circle on a class digram,
maps into anlinterface éemen with the name gven by the synbol. The gperation list
of a rectande symbol maps into the list of Operation elementsof the Interface

A dashedgenermization arow from a dasssymbd to an irterface synbol, or a solid
line connecting a dass symbd and aninterface circle, maps into an Abstraction
dependeng with the «realize» stereotype between the caresponding Classifer and
Interfaceelements. A dependencgy arrow from a classsymbol to an interfacesymbol
maps into a Usage depemlency betweenthe coresmpnding Classifer and Interface.

3.29 Parameterized Class (Template)

3-48

3.29.1 Semantics

A template is the descripte for a classwith one or more unbound formal parameters.
It defines a family of classes, edtclass sgdfied by binding the parameters to actual
values. Typically, the parameters represen attribute types; however, they can also
represert integers, other types, or @en operatiors. Attrib utes andoperations within the
template are defined in terms of the brmal paameters so they too becone bound when
the tenplate itself is bound to actual values.

OMG-UML V1.3 March 2000

A template is not a directly usable class lecause it has tnbound parameters. Its
parametess must be bound to actual values tocreatea bound form that is a class. Ory
a dasscan be a superclassor the tamget of an associgion (a one-way asciation from
the tenplate to another class ispemissible, however). A template may be a subclass of
an adinary class. This implies that all classes forned by binding it are subclasses 6
the given superclass.

Parameterization can ke applied to other ModelElements, sich as ®@llaborations o
even entire Packages. The description given here for classes aplies to other kinds of
modeling elenents in the obrious way.

3.29.2 Notation

A smdl dasted rectamle is supeimposedon the pper right-hard corner of the
rectargle for the class(or to the synbol for another modeling elemert). The dasted
rectargle contains a prameterlist of forma parameters for the class anl their
implementation types. The list mast not be enpty, adthough it might be suppressed in
the presentéion. The name, attributes, aad operations d the paameerized class apea
as rormal in the dassrectargle; however, they may alsoinclude occurrences of the
formal parameters. Occurences of the formal parameters can alsooccur inside of a
context for the class, fo examge, to show a related class idertified by one of the
paameters.

3.29.3 Presentation Options
The parameter list may be comma-separated or it may be one pe line.
Parameters ae restricted attrilutes, shown as stiings with the syntax

name : type = defau lt-value
® Where name is an identifier for the parareter with scope insice the tenplate.
® Where type is a stringdesigating a TypeExpression for the paameter.

® Where default-value is a stringdesignating an Expression for a default value that is
used when the corespnding argument is omitted in a Binding. The equal signand
expressionmay be omitted, in which case theres no default value and the agument
must be supplied in a Bindng.

If the type nane is onitted, the rameter type is assunmed to be ClasHier. The value
supplied for an argumert in a Binding must be the name of a Classifier (including a
class or a data type). Other parameter types (such as Integer) must be explicitly
shovn. The value sugplied for an argument in a Binding must be an adual instane
value of the given kind.

OMG-UML V1.3 Parameterized Class (Templ ate) March 2000 3-49

3.29.4 Example
' T k:Integer |
FArray “------- -
k..k
T
V\
N \«bind» (Address,24)
AN

FArray<Point,3> AddressList

Figure 3-25 Temphte Notation with Use of Parameer as aReference

3.29.5 Mapping

The addtion of the tenplate dashedbox to a synbol causes the adidion of the
paraneter names in the list as ModelElements within the Namespace of the
ModdElement carespading to the base symbl (or to the Nanmespa® conaining a
ModelElement that is rot itself a Namespace). Each & the parameter ModelElements
has tle templateParameter associatian to the base MoalElement.

3.30 Bound Element

3.30.1 Semantics

A template canrot be usedirectly in an ordinary relationship such asgenerdization or
assodation, becatse it has a free palameter that is nat meaningful outside of a scope
that ceclares the paraneter. To be used, a template’s parameters must be bound to
adual values. The adual value for eachparamete is an expresson defined within the
scope of use. F the referencing scope is itself a tenplate, then the parameters of the
referencing template can be used as actual @lues in binding the referenced tenplate.
The paraneter names in the two templates caniot be assunmed to correspnd because
they have no scope outside of their respective templates.

3-50 OMG-UML V1.3 March 2000

3.30.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as
follows:

Template-name ‘<* value-list *>’
® Where value-list is a canma-delimited non-empty list of value expressions.

® Where Template-name is identical to the nane of a template.
For examgde, VArray<Point,3> designates a class destbed by the template Varray.

The number and type of values nust match the number andtype of the tenplate
paraneters for the template of the gven name.

The bound elenent rame may be wsed awywhere that anelenent rame of the
parameterizedkind could be used For example, a bound class name cauld be used
within a dasssymtol on a class diagram, as anattribute type, or as gart of an operation
signature.

Note that ebound element is fully specified by its template; therebre, its content may
not be extended. Declaraion of new attributes or orations for classes is nb
pernitted, for example, but a bound class cald be swbclassed ad the subclass
extended in the usua way.

The relationship between the bound elerrent and its template altenatively may be
shown by a Deperdency relationship with the keyword «bind». The agumerts are
shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the tenplate.

3.30.3 Style Guidelines

The attibute ard gperation canpartments ae rormally suppressed within a bound
class, because they must not be modified in a bound template.

3.30.4 Example
See FHgure 3-25 on page 3-50.

3.30.5 Mapping

The use of the ound elenent syntax for the reme d a symbol maps irto a Bnding
dependencgy between the dependent ModelElemert (such as Class) correponding to
the baund elemen symbol andthe provider ModeElement (again, suchas dasg
whose name matches the nane part of the baund elenent without the aguments. If the
name doesnot match atemplate ement or if the number of arguments in the bound
elementdoesnot match the rumber of parameters inthe tenplate, then the model isiill
formed Ead amgumert in the baind elemen mgs intoa MadelHement bearirg an
argument link to the Binding dependengy. An explicitly drawn «bind» dependency
symbol maps toa Binding dependency with arguments as desaibed above.

OMG-UML V1.3 BoundElement March 2000 3-51

3

3.31 Utility

A utility is a groping of global variables andprocedires in the form of aclass
declaation. This is not a fundamental construct, but a progamming convenience. The
attributes aml operations of the utility becon®e global variables and procedures. A
utility is modeledas a stereotype o a class.

3.31.1 Semantics

The ingance-sce attibutes ad gperations d a uility are interpreted as ¢pbal
attributes aml operations. It is inappropriate for a utility to d eclare class-scope
attributes andoperations because ttre instarce-scope menbers arealready interpreted
as keing at class scqe.

3.31.2 Notation

A utility is shown as the stereotype «itility» of Class It may have both attributes and
operations, all of which aretreated as dobal attributes and operations.

3.31.3 Example

«utility»
MathPak

sin (Angle): Real
cos (Angle): Real
sqrt (Real): Real
random(): Real

Figure 3-26 Notation for Utility

3.31.4 Mapping

This is rot a sgecial symbol. It simply mapsinto a Class elerant with the «itility »
steeotype

3.32 Metaclass

3.32.1 Semantics

A metaclass is a class whee instarces ae classes.

3-52 OMG-UML V1.3 March 2000

3.32.2 Notation

A metaclass is fiown as the steeotype «metaclass» 6 Class.

3.32.3 Mapping

Thisis not a sgedal symbol. It simply mapsinto a Classelementwith the «netaclass»
steeotype

3.33 Enumeration

3.33.1 Semantics

An Enumeration is a usedefined data type whose instaoes ae a &t of user-specified
nanmed enumnerdion literals. The literals hae arelative order but no algebrais defined
on them.

3.33.2 Notation

An Enumeration is shown using the Clasgier ndation (a rectande) with the keyword
«enumeration». The name of the Enumerdion is gdacedin the ypper compartment. An
ordered list ® enumeration literals may be placed, one toaline, in the midde
compartment. Operations definedon the literals may be placed in the lower
compartment. The lower and middle compartments may be suppressed.

3.33.3 Mapping

Maps irto an Emmeration with the given list of enumeration literals.
3.34 Sereotype

3.34.1 Semantics

A Steretype is a wser-defined metaelenment whose strgture matches anexisting UML
metaelenent.

3.34.2 Notation

A Stereaype is shonn using the Classifer notation (a rectangle) with the keyword
«stereaype» The nane d the Steretype is pacedin the uper compartmert.
Constraints on elements described by the steeaype may be placed in a named
compartment calledConstraints. Required tags may be placed in a naned
compartment calledTags.

OMG-UML V1.3 Enumeration March 2000 3-53

The base demernt may beindicatedby a property string of the form { baseEl enent
= nane}.

An icon can e defined for the steretype, but its grgphical defnition is outside the
scope of UML and must be handed by an editing tool.

3.34.3 Mapping

Maps irto a Steeatype with the given congraints and base elanent.

3.35 Powertype

3.35.1 Semantics

A Powertype is a userdefined metaelermrent whose instarces are tas®s in the model.

3.35.2 Notation

A Powertype is $iown usirg the Classifer notation (arectangle) with the stereotype
keyword «powertype». The rame d thePowertype isplacal in the ugperconmpartmert.
Becatse theelements areordinary classes, atibutes andoperaions on the powertype
are usudly not defined by the user.

The instances of the powertype may be indicaed ty placing a dahed line acrossthe
parent lines of the classes with the syrtax

di scri m nat or Nane: powertypeNane,

wherethe powertype name on theline implicitly defines a pwertype if one is not
explicitly d efined.

3.35.3 Mapping

Maps irto a Class withthe «mpwertype» stereofye with the given clases a instarces.

3.36 Class Pathnames

3.36.1 Notation

Class ymbols (rectargles) sene to definea class awl its properties suchas
relationships to other classes. A eference toaclass ina dfferent package is rotated by
usng a pathname for the class, in the form:

package-name :: class-name

3-54 OMG-UML V1.3 March 2000

References to dasss also appearin text expressons, most notably in ty pe
speifications for attributes ard variables. In these places a rekrence b a class is
indicaed by simply including the nane of the class itselfincluding a possible package
name, subject tothe syntaxrules of the expressgon.

3.36.2 Example

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

Figure 3-27 Pathnames ér Classesn Other Packages

3.36.3 Mapping

A class synbol whose nane strirg is a @thname represents aeference tothe Qass
with the given nane inside the package with the gen name. The name is assumed to
be dfined in the target package; therwise,the model is ill form ed. A Relationshp
from asymlol in the current package(i.e., the package cortaining the diagram and its
mapped demerts) toa syniol in arother package is pat of the curert packace.

3.37 Accessing or Importing a Package

3.37.1 Semantics

An elemen may reference an elemant cortained in a diferen package. On thepackage
level, the «acess> dependercy indicates thathe canterts of the taiget package maybe
referenced Lty the client padkage or packages reursively embedded within it. The
target references nust have visibility sufficient for the refrents: public visibility for an
unrelated packagg, public or protected vsibility for a descenént of the target package,
or any visibility for a package nestednside the taget package (an accessdependency
is nat required for the lattercase) A package restedinside the packagemaking the
accessgets the same acess.

OMG-UML V1.3 Accessingor Importing a Package ~ March 2000 3-55

3-56

Note that an acces dependency does not modify the namespae of the cliert or in any
other way automatically create eferences; it nerely grants permission to establih
references. Nae also tlat a tol could auomatically creste acessdependercies fa
users if desiredwhen references arecreaed.

An import dependerncy grarts access andlso loads the names with appropriate
visibility in the target namesgace into the accesing package (i.e., a pathname is not
necessaryo reference ttem) Such names &e not auomatically reexported; however, a
nanme must be explicitly re exported (andmay be given a new name andvisibility at the
sametime).

3.37.2 Notation

The aaccessdependercy is displaed as a éperdency arow from the refrencing
(client) packageto thetarget (supplier) packagecontaining the taget of the references.
The arow has the steeotype keyword «aacess». his deperdency indicates that
elementswithin the client package nay legally reference elenents within the sugplier.
The references nust also satisfy visibility constraints spedfied by the sypplier. Note
that the dependency does nd automatically create ary references.It merely grants
permnission for themto be establisked.

The import dependercy has the same notation as the acessdeperdencgy except it has
the geredype keyword «import».

OMG-UML V1.3 March 2000

3.37.3 Example

Customers

Banking::CheckingAccount

«access»

|
|
|
Banking \

CheckingAccount

Figure 3-28 Access Deperehg/ Among Packages

3.37.4 Mapping

This is rot a special symbol. It maps into a Pemission dependengy with the stereotype
«access»r «mport» between the two packages.

3.38 Object

3.38.1 Semantics

An object represelts a partialar instance of alass. It hasidentity andattribute \alues.
A similar notation dso represents a ple within a collalkoration becawse rdes hae
instance-like characteistics.

3.38.2 Notation

The olject notation is derived from the dassnatation by underlining instancelevel
elemerts, as explainedin the general comments in Section3.12, “Type-Instarce
Corregpondence,” on page 3-14.

An object shown as a rectargle with two companmerts.

OMG-UML V1.3 Object March 2000 3-57

3-58

The tgp compartment shows the namne of the object and its class, all inderlined, using
the syrtax:

objectname : classname

The classname @n include a Ll pathnane of erclosing package,if necessar. The
packagenames prececk the classiame andare sepaated by double colons. For
example:

di spl ay_wi ndow. W ndowi ngSyst em : Gr aphi cW ndows: : W ndow

A stereaype for the class my be shavn textually (in guillemets abwe the name
string) or as anicon in the upper right corner. The stereatype for an object mustmatch
the steredype for its class

To show multiple classes ttat the object is aninstarce o, use a canmaseparatel list
of classnanes. These ¢assiames must be legd for multiple classification (i.e., only
one implementatin class germitted, but multiple types pernitted).

To show the preserte of anobject in a particular state ofa class, se thesyntax:
objectname : classname ‘[* statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur
concurrertly.

The secad compatment stows the attibutes for the object ard their values as a list.
Each value line ha the syrax:

attributename : type = value
The type is redundant with the attibute declaration inthe class ath may be amitted.

The walue is sgcified as a literal value. UML does na specify the syrax for literal
value expressias; however, it is expected that a tool will sp edfy such a syntax using
some programming language.

The flow relatiorship between tw values d the same object over time can ke shavn
by conneding two object symbols by a dashed arrow with the keyword «become». If
the flow arrow is on a cdlaboration diagram, the label may alsoinclude a sequence
number to sfow whenthevalue changes.Similarly, the keyword «copy» canbe sedto
shaw the creation of one object from anaher object value.

3.38.3 Presentation Options

The nane of the olject may be onitted. In this case, the olon should be kept with the
class narre. This representsan anonymous object of the given class gven identity by
its rdationships.

The class o the olject may be suppressed (ogethe with the @lon).
The attibute value conpartmern as a whble may be sppressed.

Attributes wlose values ae ot of interest nay be sypressed.

OMG-UML V1.3 March 2000

3

Attributeswhose values chage during a computation may show their values asalist of
values held over time. In an interadive tod, they might even change dynanically. An
alternate rotation is to show the same object more than oncewith a «becanes»
relationship between them

3.38.4 Syle Guidelines

Objects may be shawvn on class dagrams. The elements on collaboration diagrams ae
not objects, becawse thg describe rany posdble ohects. They areinstead roles tht
may be held by object. Objects inclass diagams srve mainly to show examdes of
data structures.

3.38.5 Variations

For a larguage such asSelf in which operations can beattachedo individua objectsat
run time, a third compartmert containing operaions would be appropriate as a
language-specific extension.

3.38.6 Example

triangle: Polygon triangle

center = (0,0)
vertices = ((0,0),(4,0),(4,3))

borderColor = black
fillColor = white ‘Polvaon
triangle: Polygon f
scheduler

Figure 3-29 Objects

3.38.7 Mapping

In an object diagram, or within an ordinary classdiagr.am, an dbject symbd magps into
an Object of the Aass (or Classes)given by the classname part of the name string. The
attribute list in the symbol maps into a set d Attrib uteLinks attachedto the Object,
with valuesgiven by the value expressonsin the attrilbute list in the symbol. If a list of
states irbrackets follows the class nam, thenthis mapsinto a ClassfierinStatewith
the namedClass as its type and the named States as thestates.

OMG-UML V1.3 Object March 2000 3-59

3

3.39 Composite Object

3-60

3.39.1 Semantics

A composite objectrepresentsa hgh-level object made of tightly-bound parts. Ths is
an irstance of a omposte class, wtich implies the canposition aggregation between
the class andks parts. Acomposite object is similar to (but simpler and more restricted
than) a collabaration; however, it is defined completely by compostion in a static
mode. See Section 3.46, “ Composition,” on page 3-73.

3.39.2 Notation

A composite dject is srown as anolject symbol. The rame string of the conposite
object is placead in a compatment near the top of the rectande (as with any object).
The lower compartmert holds the parts of the conposite object insteadof a list of
attribute values. (However, even a list of attribute values may be regardedas the parts
of a conposite object, so there is not a great difference.)lt is possible for some of the
parts to le composite objects withfurther nesting.

3.39.3 Example

awindow : Window

horizontalBar:ScrollBar

verticalBar:ScrollBar

moves

surface:Pane

moves

title: TitleBar

Figure 3-30 Composie Objects

OMG-UML V1.3 March 2000

3.39.4 Mapping

A composite object symbol mapsinto an Object of the gven Class with composition
links to eachof the Oljects aml Links correspading to the ¢assbox symbols andto
assaiation path symbols directly contained within the baundary of the composte
object symbol (and not contained within another deeper boundary).

3.39.5 Association

Binary asscriations ae shavn &s lines canecting two classifer symbols. The lines
may have a variety of adornments to stow ther properties. Ternary and higher-order
assodations are stown as damands connected to class synbols by lines.

3.40 Binary Association

3.40.1 Semantics

A binary associationis an as®ciation among exactly two classifiers (including the
possitlity o f an as®ciation from a classifier to itself).

3.40.2 Notation

3.40.2.1

A binary assodation is drawn as a solid path connecting two dassifier symbols (both
ends may be connectedto the sameclassifier, but the two ends are distinct). The path
may consist d one ar more comectedsegmerts. The indvidual segments hase no
semantic significance, but may be graphically meaningful to a toal in dragging or
resizing an association symbad. A connecied segience o segments is calleda path.

In a binary association, both ends may attach tothe same classifier. The links of such
anassoci@gion may connect two differentinstanaes from the sameclassifier or one
instanceto itself. The lattercase nay be forbidden by a constraint if necessary

The endof anasseiationwhele it connects to a kassfier is called anassociation end.
Most d the interesting information about an as®ciation is attached toits ends.

The path may also have graphcal adornmernts attached to the main part of the path
itself. These admmaents indicateproperties d the entire assaiation They may be
dragged along a ssgment a across segments, but must remain attaded tothe peth. It is
a tod responsibility to determine how close associationadornments may approach an
end so that confusion does not occur. The following kinds of adornments may be
attachedto a path

associ ation name

Desigrates the pptional) nane of the associatio.

OMG-UML V1.3 Binary Association March 2000 361

3-62

3.40.2.2

3.40.5.1

It is shown asa name string near the pah (but not nearenough to an end to be
confused with a rolename). The name string may have an optional small black sdid
triangle in it. The point of the triangle indicates the direction in which to readthe
name. The nane-direction arrow hasno semantics significance, it ispurely de<riptive.
The classiffers in the assciation ae odered as indcatedby the nane-direction arrow.

Note — Thereis no needfor a name direction property on the asseiation model; the
ordering of the classifers within the association is the rame direction. This convention
works evenwith n-ary assogations.

A stereatype keyword within guillemets may be placedabove or in front of the
assaiation name. A property string may be placed after or belaw the asciation name.

association class symbol

Designates an assotation tha has class-li& properties, suchas attibutes operdions,
andother assaiations. This ispresent if,and only if, the assaciation is an association
class. It is shown as a classsymbol attached to the asscciation path by a dashedline.

The assocation path and the assotation class symiol represen the same underlying
mode element, which has asinde name. The name may be placed on the pdh, in the
class symbol, or on both (but they must be the same name).

Logically, the asciation class andthe assaiation are the sane semantic entity;
however, they are graphically distinct. The assciation dasssymbol can be dragged
away from the ling, but the dashedline must rermain attachedto both the pathand the
class symbol.

3.40.3 Presentation Options

When two paths cross, the cossing may optionally be shown with a small semicircular
jog to indicate that the aths do not intersect @s in electrical circuit diagrams).

3.40.4 Syle Guidelines

Lines may be drawn using various styles including orthogonal segmerts, oblique
sggments, ard curved s@ments. The choice o a particular set of line styles isa user
choice.

3.40.5 Options

Xor-association

An xor-constraint indicates a situatio in which only one of several potential
assa@iations may be instartiated at one tine for any single instarce. This is showvn as a
dashed line comectingtwo or more assaiations, all of which must have a classifier in

OMG-UML V1.3 March 2000

3

common, with the condraint string “{xo r}" labelin g the dashedline. Any instance of
the classifer may only participate in one of the assocations at one time. Each
rolenarre must be diferent. (This issimply a predefned use @ the constraint rotation)

3.40.6 Example

Company ' Person

0 <Job 1.0

employer | employee
|

Job
salary

boss
0.1

worker|

<Manages

/ Person
|{xor}

Account |

\‘\ Corporation

Figure 3-31 Associaton Notaton

3.40.7 Mapping

An associatia path connecting two class symbols maps to an Associatiobetween the
correspading Classifers If there is anarrow on the assaciation name, then the Class
correspnding to the tail of the arrow is the first class and tre Classifier correspnding
to the headof the arrow is the secand Classifier in the ordering of ends of the
Assciation; otherwise,the ordeling of ends in the assaeiation is undetemined. The
adanments on the path map into propetties of the Associationas desclibed above. The
Associdion is ovned by the pakage cotaning the diagram.

OMG-UML V1.3 Binary Association March 2000 3-63

3

3.41 Association End

3-64

3.41.1 Semantics

An assceiation endis simdy an erl of an associatio where it comects to a classifier.
It is part of the assaiation, nat part of the classfier. Each ass@iation has two or more
ends. Most of the interesting details about an assaiation areattachedto its ends. An

assodation end is not a separable element, it is just a mechanical part of anassociatbn.

3.41.2 Notation

3.41.2.1

3.41.2.2

The path may have graphical adornments at ea® end where the path connects to the
classifier symbol. These adonmerts indcate properties d the associationrelated tothe
classifier. The adbrnments ae patt of the assaciation symbol, not part of the classifier
symbol. The endadarnmernts are either attadied to the erd of the line, ornea the erd
of the line, andmust drag with it. The following kinds of adornments maybe attacked
to an assaciation erd.

multiplicity

Specifed by a text syntax, multiplicity m ay be suppressed on a particularasociation

or for an entirediagram. In an incanplete model the multiplicity may be urspecified in
the modd itself. I n this case, it nust be suppressed in the naation. See Sectior8.42,

“Multiplicity,” on page 3-68.

ordering

If the multiplicity is greatethanone, therthe set of elated elerents an be ordered or
unordered. If no indication is given, thenit is unordered (the elements form a set).
Various kinds of ordering can be spedfied as a constraint on the assaiation end. The
declaation doesnot specify how the orderingis established or maintained. Operdions
that insett new elements must make provision for specifying their position either
implicitly (such as at the endl or explicitly . Posside values include:

® unordered - the elements form an unordered se. This is the default and need not be
shown explicitly .

® ordered - the elaentsof the set have an ordeting, but duplicates arestill
prohibited. This generic specification includes all kinds of ordering. This may be
speified by the keyword syntax “{or dered}".

An ordered relationship may be implemented in various ways; however, this is
normally specifed & alanguagespecified mde gereration property to select a
partiaular implementation An implementation extension might substitute the data
structure to hold the elemerts for the gereric specification “ordered”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses adesign decision

OMG-UML V1.3 March 2000

3

3.41.2.3

3.41.2.4

3.41.2.5

3.41.2.6

3.41.2.7

® soited- the elenments ae sotted basedon their internal values. The actud sorting
rule is best goecified as a segrate canstrant.

qualifier

A qualifier is ogional, but not suppressble. SeeSection 3.43, “Qualifier,” on
page 3-69.

navigability

An arrow may be attachedo the erd of the path to indicate that ravigation is
supported toward the classifer attachedto the arow. Arrows may be attachedto zero,
one, or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation issupported in a given drection In pradice, it is often coweniert to
suppress ®me of the arows and just show excepional situations. See Sectim 3.22.3,
“Presertation Options,” on page 3-33 for details.

aggregation indicator

A hollow diamad is attacled tothe endof the pathto indicate agregation. The
diamond may not be attached tdoth ends o a line, but it need not be present at all.
The damand is attached tothe dassthat is the agregate. The aggregation is optional,
but not suppressibe.

If the damond is filled, then it sigiifies the srong form of aggegation known as
composition. See Setion 3.46, “Composition,” on page3-73.

rolename

A name string nea the erd o the pah. It indicates tle rde payed by the das
attached to the end d the pathnearthe rolename. The rolenan® is optional, but not
suppressible.

interface specifier
The reme d a Classifer with the syrnax
' classifiername, . ..

It indicates tle belavior expeded d anassocited dject by the rdatedinstarce. In
otherwords, the interface sgcifier specifies the kehavior required to enable the
assaiation. In this case, the actual classiér usually provides more functionality than
reguired for the particularassociation (since it may have other responsibilities).

The wse of a rdename aml interffacespecifier ae eqiivaent to creating a small
collabaation that includesjust an as®ciation andtwo roles, whose structue is defined
by the rolename and attached classifier on the original as®ociation. Therefore, the

OMG-UML V1.3 Association End March 2000 3-65

3-66

3.41.2.8

3.41.2.9

original as®ciation and classifers are ause d the wllaboration. The original classifer
must beconpatible with the irterfacespecifier (which canbe an interface @ a type,
among other kinds of classfiers).

If an irterface spedfier is onitted, thenthe assdation may be wsed toohtain full
aacessto the as®ciated class.

changeability

If the links are changeable (canbe added, deleted, and moved), then no indicator is
needed. The property {frozen} indicates that nolinks may be added, deleted, or moved
from anobject toward the em with the adrnment) afterthe object is craeted and
initialized. The proprty { addOnly} ind icatesthat addtional links may be added
(presumably, the multiplicity is variable); however, link s may not be modified or
deleted.

visibility
Specifed by avisibility ind icator (+', ‘#, ‘-’ or explicit property name such as
{public}) in front of therolename. Spedfies thevisibility of the asociationtraversing

in the direction toward the given rolename. See “Attribute’ on page 3-38 for ddails of
visibility s pecification.

Other properties canbe specified for assaiation ends, but there is no graphicd syntax
for them. To specify suchproperties, use the constraint syntax near the erd of the
assocation path (atext string in braces).Examges of other properties indude
mutability.

3.41.3 Presentation Options

If there ae two or more aggregations to the same ggregate, they may be drawn as a
tree by merging the aggegation end into a sirgle segment. This requres that dl of the
adanments on the gygregation ends be consistert. This is purely a presenation option,
thereare noadditional senantics toit.

Various options aie possble for showing the navigation arrows on a diagr.am. These
can vary from time to time by user request a from diagramto diagram.

® Presentation option 1: Shav dl arrows. The absewce d anarow indicates
navigation is not supported.

® Presentation option 22 Swppress all aows. Noinference ca be dawn abait
navigation. Ths is gmilar to any situationin which informationis suppressed from
a view.

® Presentation option 3. Suppress aows for as®ciations with navigability in both
diredions, show arrows only for assciations with one-way navigability. In this
case, the two-way navigability cannot be distinguished from no-way navigation;
however, the latter case is normelly rare or nmexistert in practie. This isyet
andherexample of a situation in which some information is suppressed from a
view.

OMG-UML V1.3 March 2000

3.41.4 Syle Guidelines

If there ae multiple adornmernts on a singe associationend, they are presented irthe
following order, readirg from the endof the pathattachedto the classifer toward the
bulk of the path:

® qualifier
® aggregation symbol
®* navigaion arow

Rolenames ard multiplicity should be placed nearthe end 6 the pathso that they are
not confusedwith a different association. They may be placed on either side of the
line. It is tempting to specify that tey will always be placel on a gven sice of the line
(clockwise or cownterdockwise), but this is sometimes overridden by the reed for
clarity in a crowded layout. A rolename and a multiplicity may be placedon opposite
sides of the sameassciation end, or they may be placedtogether (for example, “*

employeé).

3.41.5 Example

1 +points
Contains» 31 _
Polygon <> Point
{ordered}
1

1 GraphicsBundle

-bundle| color
texture

density

Figure 3-32 Various Adornmens on Assocation Roles

3.41.6 Mapping

The acdornments m the erd of anassocidgion pathmapinto propetties of the
correspnding role of the Association. In generd, im plications cannot be drawn from
the aksence d an adornment (it may simply be suppressed) but seethe preceding
descriptions for detais. The interface speifier maps into the “specification” rolename
in the AssociatinEndClassifier assaiation.

OMG-UML V1.3 Association End March 2000 3-67

3

3.42 Multiplicity

3.42.1 Semantics

A multiplicity item specifies terange of allowable cardirdlities that aset may assune.
Multiplicity specificationsmay be given for roles within assaiations, parts within
composites, repetitions, and other purposes. Essentiallya multiplicity specificationis a
subset d the open set of non-negative integers.

3.42.2 Notation

A multiplicity specification is shown as a text string comprising a conma-separatd
seqlence d integer intervals, where aninterval represents a(possbly infinite) range of
integers,in the format:

lower-bound .. upper-bound

where lower-bound andupper-bound are literal integer \alues, sjgcifying the dosed
(inclusive) range of integers fom the lower bound to the upper bound. In addition, the
sta character (*) may be usedfor the upper bound, dencting an unlimited upper
bound. In a parameterized context (such as a template), the bounds could be
expressiors but they must evaluate toliteral integer values for ary actual wse. Unbound
expressiors that do not evaluate to literd integer values are nat permitted.

If a sinde integervalue is specified, thenthe integer range contains the single integer
value.

If the multiplicity spedfication comprises a sintg star(*), then it denotes the
unlimited nonnegative integer range, that is, it is equvalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that ro instances can occur.

Expressims in some spedfication language can le used for multip licities, but they
must resol\e to fixed integer ranges within the model (i.e., no dynamic evaluation of
expressiors, essentiallythe sane rule on literal values as nost programming
languages).

3.42.3 Syle Guidelines

Preerably, intervals shaild be nonotonically increasing For example, “1..3,7,10" is
preferable to “7,10,1..3".

Two contiguous intervals shaild be conbined into a sinde intenal. For exanple,
“0..1" is preferabe to“0,1".

3.42.4 Example

3-68

0.1
1

OMG-UML V1.3 March 2000

1.*
1.6
1..3,7..10,15,19..*

3.42.5 Mapping

3.43 Qualifier

A multiplicity sting maps into a Multigicity value with one or nore
MultiplicityRarges. Duplications a other namstardard presentatio of the string itself
have no effect on the mapping. Note that Multiplicity is a value and not an object. It
cannot stard on its own, but is the value of some element property.

3.43.1 Semantics

A qualifier is an attiibute or list of attributes wlose values €rve to partitionthe st of
instances associted with aninstanceaaoss an associ#on. Thequalifiers are atibutes
of the associéon.

3.43.2 Notation

A qualifier is shevn as a smallectamgle attacted b the endof anas®ciation path
betweerthe final path segment and the symbol of the classifer that it conneds to. The
qualifier rectangle is partof the ass@iation path, not partof the classifer. The qualifier
rectamgle dags with the path segments.The qualifier is attacked tothe source erl of
the assocition. An instarce d the source classifier, together with a value of the
qualifier, uniquely seled a partition in the set of taget classfier instarces on the other
endof the assaiation (i.e., every target fals into exactly one partition).

The multiplicity attachedto the target end denotesthe passilde cardinglities of the set
of target instances seleted by the pairing of a souce instarce ard a qualifier vaue.
Common values include:

®* “0..1" (aunique value may be selected,ut every possble qualifier value daes na
necessarilyselect avalue).

® “1” (every possible gadlifier value seletsa urique tamget instance; therefore, the
domain of qualifier values must be finite).

® ¥ (the qualifier value is an imlex that partitions the taget instarces into subsets)

The qualifier dtributes aredrawn within the qualifier box. There nay be ore or nore
attributes siown oneto a line. Qualifier attributes have the sane notation as classifer
attributes, except that initial value expressions are not meaningful.

OMG-UML V1.3 Qualifier March 2000 3-69

It is permissible (although somewhat rare), to have aqualifier on each end of a single
assaiation.
3.43.3 Presentation Options

A qualifier may not be suppressed(it provides esseial detail whose onission would
modify the inherent characte of the relationship).

A tool may use a lighterline for qualifier rectargles than for class ret¢anges to
distinguish them dearly.

3.43.4 Syle Guidelines

The qualifier rectargle should be smdler than tre att@hedclass retande, althaugh
this is not always practicd.

3.43.5 Example

Bank Chessboard
account # rank:Rank
0 file:File
0.1 1 ?
1
Person
Square

Figure 3-33 Qualfied Assocations

3.43.6 Mapping

The preserce o a qualifier box on anend of an association path maps into a list of
qualifier attributes an the correspading Assaciation Role. Each attribute entry string
inside the qualifier box maps into an Attribute.

3.44 Association Class

3.44.1 Semantics

An as®ciation class is an assoationthat alsochas class perties 6r a classthat has
assaiation propetrties). Even though it is drawn as anassociationand a class, it is
really just a sirgle model elenent.

3-70 OMG-UML V1.3 March 2000

3.44.2 Notation

An assaiation classis shown asa classsymbol (rectargle) attached by a dashed line to
an asscciation path. The name in the classsymbol and the name string attacted to the
assaiation path are redundant and they should be the sane. The assaiation path may
have the usua adarnmernts on either end. The class symbol may have the usual
contents. There areno adarnmerts onthe dasted line.

3.44.3 Presentation Options

The class synbol may be suppressed It provides sibordinate detd whose onission
does nd change the overall relationship. The assaiation path may not be syppressed.

3.44.4 Syle Guidelines

The attghment paoint should not be near enaugh to either end of the path that it
appears to ke attached to the end of the path, o to any of the as®ciation end
adornments.

Note that the asciation path andthe asscciation class ae asinge model elemen and
have a single name. The name can be shown on the path, the dass symbol, or both. If
an assoiation class tas only attributes, hut no operations or other asciations, then
the name may be displayed on the assaiation path and omitted from the association
class symbol to emphasize its “association natue.” I f it has operdions ard other
assaiations, thenthe name may be onitted from the pathand placedin the class
rectargle to emphasize its “class néure.” | n neither case ae the actwl semantics

different.
3.44.5 Example
O 1.0
Compan T
pany employer | employee Person

Job b
0SS
salary
0.1
worker|(
<“Manages

Figure 3-34 Associaion Class

OMG-UML V1.3 Association Class March 2000 3-71

3.44.6 Mapping

An asscciation pah connectingtwo class bxes connectal by a dashed line to arother
class bax maps into a single AssociationClass elenert. The name of the
AssciationClass element is taken fom the as®ciation path, the attabed class bg, or
both (they rmust beconsidert if both ae present). The Assodation properties map from
the assoiation path, as sgecified previously. The Class prgerties map from the class
box, as specified previously. Any constraints or properties placed on eitherthe
assaiation path or attached class lox apply to the AssociatiorClassitself; they must
naot corflict.

3.45 N-ary Association

3.45.1 Semantics

An n-ary associabtn is an assotation amag three @ more classifers (a singe
classifier may appearmore thanonce). Eachinstarce ofthe assocition is ann-tuple of
valuesfrom the respective classifier. A binary as®ciation is a speial casewith its own
notation

Multiplicity for n-ary assciations may be sgdfied, hut is lessolvious thanbinary
multiplicity. The multiplicity on a wle representghe pdential number of instance
tuples in the associationwhenthe other N-1 values are fixed.

An n-ary assaiation may not contain the aggregation marker on any role.

3.45.2 Notation

An n-ary associabtn is shown as a lage damand (that is, lage canpared to a
teminator on a path) with a path fromthe damond to ead participant class. The ame
of the associatbn (if any) is shown nearthe diamond. Role adornments may appea on
each path aswith a binary association Multiplicity m ay be indicated; however,
qualifiers andaggregation are not permitted.

An assciation dasssymbol may be attaded to the damand by a dashal line. Ths
indicates an nrary asscciation that has attributes, qoerations, ard/or asscciations.

3.45.3 Syle Guidelines

Usuallythe linesare dravn from the points on the dianond or the midpoint of a side.

3.45.4 Example

This examgde shavs the reord of a team ineachseasonwith a garticular goalkeeper.
It is assumedthat the goalkeeper might be traded during the seasorand canappear
with differert teanms

3-72 OMG-UML V1.3 March 2000

Year

season| U

Team Player

0 U

team goalkeeper

Record

goals for
goals against
wins

losses

ties

Figure 3-35 Ternary assoiation that is also an assoiation clas

3.45.5 Mapping

3.46 Composition

A diamand attaclked to sane rumber of class gmbols by solid lines map into an N-
ary Associgion whose AssciationEnds ae attacted tothe carespanding Classes. The
orderingof the Classifersin the Assaiation is indeteminate from the diagram If a
class hox is atachal to the damand by a dastedline, then the corresponding Classifer
suppliesthe classifier properties for an N-ary AssaociationClass

3.46.1 Semantics

Compostion is aform of aggregaion with strong ownership and coincident lif etime of
part with the whole. The multiplicity o f the aggegate endmay not exceedone (it is
unshared. See Section 3.41, “Association End,” on page 3-64 for further details.

The parts of a composition may include classesind asseiations (they may be formed
into AssociationClassesf necessary).The meanirg of an assaiation in a composition
is that ary tuple of objects comected ly a sinde link must all belorg to the same
container object

OMG-UML V1.3 Composition March 2000 3-73

3-74

3.46.2 Notation

Composition may be showvn by a sdid filled diamond as an associationendadornment.
Alternately, UML provides a grapitally -nested form that is more corvenient for
showing compostion in many cases.

Instead & using binary associationpaths usng the conposition aggegation
adanment, composition may be shown by graphical nestirg of the symbols of the
elements for the pants within the symbol of the elenrent for the whole. A nested class-
like elenent may have a multiplicity within its conposite dement. The multiplicity is
shown in the upper right corner of the symbol for the part. If the multiplicity mark is
omitted, then the default multiplicity is many. This represerts its multiplicity as a part
within the comnposite classifier. A nested elenent may have a rolename within the
composition; the name is shown in front of its ty pe in the syrtax:

rolename ‘:’ elassname
This represents its rolerame within its composition assaiation to the conposite.

Alternately, composition is shown by a sdid-filled diamond adanment on the endof
an assoiation path attached tathe elerrent for the whole. The multiplicity may be
shown in the narmal way.

Note that attributes ae, in effect, composition relationships between a classfier and
the classifers of its attributes.

An associationdrawn entirely within a border of the composite is considered to be part
of the conposition. Any instances a a single link of it m ust be from the sare
composite. An asscciation drawn sich that its path breaks the border of the composite
is not considered tobe part of the conposition. Any instances ora sinde link of it
may be from the same or different compostes.

Note that the natation for composition resenbles the natation for collaboration. A
composition may be thought of as a cdlaboration in which all of the participants are
parts of a single composite object.

Note thet nested rotation is nat the correst way to show a dassdeclaed within another
class. Sut adeclaredclass isnat a structural pat of the enclosing classbut merely has
scpe within the namesgace d the erclosing class, which acts like a package toward
the inner class. Sucha namescae containment may be shown by placing a package
symbol in the upper right corner of the class symbl. A tool canallow a user to click
on the package symbd to open the set d elements dceclared within it.

3.46.3 Design Guidelines

Note tha a class symbl is a composition of it s attributes ard operations. The class
symbol may be thought of as an exanple of the conposition nesting notation (with
some spedal layout properties). However, attribute ndation subordinates the attrilbites
strongly within the class; therefore, it should be usedwhenthe gructure andidentity of
the attibute objects themselves is itnimportant outside the class

OMG-UML V1.3 March 2000

3.46.4 Example
Window
scrollbar [2]: Slider
title: Header
body: Panel
Window
1
1 1
scrollbar 2 title | 1 body 1
Slider Header Panel
Window

scrollbar:Slider

2

titIe:Header1

body:Panel
1

Figure 3-36 Different Ways to Slow Conrposition

OMG-UML V1.3 Composition March 2000

3-75

3.46.5 Mapping

A classbox with anattribute compatment maps into a Classwith Attributes. Although
attributes may be semantically equivalent to compostion on a deep level, the mapped
model distinguishes the two forms.

A solid diamond on an asociationpath mapsinto the aggegation-composition
property on the carespading Association Role.

A class bax with contained class bxes maps into a set of conposition assaiations;
that is, o compostion associationbetween the Gass corespnding to the ouer class
box and eadc of the Classes carespading to the erclosedclass boes. The
multiplicity of the composite end of eachassociationis 1. The multiplicity of each
constituent end is 1if not specified explicitly; o therwise,it is the value sgecified in the
corner of the class box or spedfied on an associationpathfrom the aiter classbox
boundary to aninner class kox.

3.47 Link

3.47.1 Semantics

A link is a tuple (list) of object references.Most conmonly, it is a pair of object
references. Itis aninstance d an assogation

3.47.2 Notation

A binaty link is shown as a pth between two instarces. h the case balink from an
instanceto itself, it may involve aloop with a single instance See Sectior3.39.5
“Association,” on page 3-61 for details of pahs.

A rolename nay be stown atead erd of the link. An ascciation name may be shown
nearthe m@th. If present,it is urdedined to indicate aninstarce. Links donat have
instance names, they take their identity from the instarces that they relate. Multiplicity
is not shavn for links becawse they are instances.Otheras®ciation adornments
(aggregation, composition, navigation) may be shavn on the link ends.

A qualifier may be slown on a link. The value of the galifier may be slown in its
box.

3-76 OMG-UML V1.3 March 2000

3.47.2.1 Implementation stereotypes

A stereadype may be attached to the link end to indicate verious kinds o
implementation. The following stereotypes may be used:

«assaiation»

association(defaut, unnecessary to specify except
for emphags)

«paramnetes

methal paramete

«local»

local variabe of a method

«global»

global variabe

«self»

self link (the ability of aninstance b serd a
message to itself)

3.47.2.2 N-arylink

An n-ary link is shown & a dianmond with a path to eachparticipating instance. The
otheradornments o1 the asso@tion, and the adanments onthe assocition ends, have
the sane possibilities as tke binary link.

3.47.3 Example

treasurer

downhillSkiClub:Club

president

Figure 3-37 Links

OMG-UML V1.3

officer
Jill:Person
member
member
Joe:Person
member
Chris:Person
officer
March 2000

3-77

3.47.4 Mapping

Within an object diagram, eachlink path maps toa Link between the Instances
correspanding to the connectedclass boes. If a nameis placedon the link path, then
it is an irstance of theigen Assaiation (and the rolenames must metch or the
diagam is ill f ormed).

3.48 Generalization

3.48.1 Semantics

Genedlization is the taxonomic relationship between a nore general element (the
parent) and a more specifc element (the child) that is fully consistert with the first
element ard that adds adlitional information. It is usedfor classes, pckages, use
cases, and other elemerts.

3.48.2 Notation

Gereralization is shown asa sdid-line path from the child (the more specific elemen,
sud as a sibcdasg to the parent (the more general element, such as a suprclass), with
a large hollow triangle at the end of the path whereit meets tre more general element.

A generalization pathmay have a text label called adiscriminator that isthe name of a
partition of the children of the parat. The child is declaredto be inthe gven partition.
The eserce d adisciminator label indicaesthe “empty string’ discriminata, which
is a \alid value (the “default” discriminata).

Genesdlization may be appied to associatiors as well as classes, althmh the notation
may be nessy because of the nultiple lines. An assaation can e shavn as an
assodation class fa the pupose d attaching gereralization amrows.

The «istence of adidional children in the nodel that arenot shown on a particular
diagram may be shown using an ellipsis (. . .) in place o a child.

Note — This doesnot indicate that adtional children may be adied inthe futue. It
indicates that additional children exist right now, but are na being seen. This is a
notational convertion that information has been sippressed, nd a semantic statement.

3-78 OMG-UML V1.3 March 2000

Predefined congraints may be usedto indicate semartic congraints among the
children. A comma-sepaated list of keywords is placedin braceseither nearthe shaed
triangle (if several pathsshare a single triande) or near a dotted line that crossesll of
the generaization lines involved. The following keywords (among others) may be used
(the following constraints ae predefined).

overlapping An elemrent may have two or more children from the
set & ancestas. An instarce may be a direct or
indirect instace of two or more of the dildren.

disjoint No element may have two children in the set &
ancestas. Noinstance may be a dired or indired
instarce of two of the children.

complete All ¢ hildren have been sgdfied (whether or not
shawn). No additional children are expected.

incomplete Some children have been sgdfied, but the list is
known to be incomplete. Thee are addional children
that arenot yet in the model. Thisis a statanentabou
the nodel itself. Note that thisis not the sane as the
ellip sis, which states that adiional children exist in
the madel but are not shown on the curent dagam.

The discriminator must ke unique armong the dtributes andassaiation roles dé the
given parent. Multiple occurrences of the same discliminata name are permitted and
indicate that the children kelong to the sane partition.

The use of multiple classification or dynamic classification affects the dynamic
execution semantics of the language, hut is not usually apparent from a static nodel.

3.48.3 Presentation Options

A group of generalization pahs for a given parent may be shown as a treewith a
shared s@ment (including the triange) to the child, branchng into multiple paths to
eah child.

If a text label is placedon a generalization triangle shared by several generalization
paths to children, the label applies to all of the patfs. In other words, all of the children
share the given propeties.

OMG-UML V1.3 Generalization March 2000 3-79

3.48.4 Example
Shape
Separate Targd Style
Polygon Ellipse Spline
Shape
Share Targe Style
/\
Polygon Ellipse Spline
Figure 3-38 Styles of Displaying Genesli zations
3-80 OMG-UML V1.3 March 2000

Vehicle

power | venue

{overlapping} - —< — — — — - — - {overlapping}
WindPowered Motor Powered Land Water
Vehicle Vehicle Vehicle Vehicle

A

Figure 3-39 Genedslizaton with Disciiminatas and Constaints, Sepaate Target Style

Tree

{disjoint, incomplete}
species

Oak Elm Birch

Figure 3-40 Generdlization with Shered Target Style

3.48.5 Mapping

Each generaliation path between tw element synbols meps into a Generalization
between tk correspading GeneslizableElenerts. A generdization tree with one
arowheadand mary tails maps into a set of Gereralizations, one betweeneach
element correspnding to a symbol on a tail and the single GeneralizableElemert
corresponding to the symbol on the head. That is, a treeis semantically
indistinguishable from a set d distinct arrows, it is purely a natational convenience.

OMG-UML V1.3 Generalization March 2000 381

3.49 Dependency

Any property string attached to a gereralization arow apgies to the Generaliation. A
property string attacted tothe heal line segment on a generalization tree represerts a
(duplicated) property on ead of the individual Generalzations.

The presence of an elligs (“...") as a child node of a given parent indicates that the
semantic model containsat least one child of the given parent that is nat visible on the
current diagram Normally, this indicator will be maintained adomatically by an
editing tool.

3.49.1 Semantics

A dependercy indicates a seamtic relationship between tw model elenents (or two
sets of nodel elerrerts). It relates the model dements thenmselves anddoes nd require
a set of instanes for its meanirg. It indicates a situatia in which a charge to the
target element may require a change tothe source demert in the dependency.

3.49.2 Notation

3-82

A dependengy is shown as a cashedarrow betweentwo modd elements. The model
element at the tail of the arrow (the client) depends onthe model element at the
amrowhead(the supplier). The arow may be labeledwith anoptional stereotype andan
optional individual name.

It is possible tohave a set of elanentsfor the client or supplier. In this case,one or
more arrows with their tails on the clients areconneded to the tails of one or more
amrows with their heads on the suppliers. A small dot can be placedon the junction if
desired. A nde on the dependency should be attached at the junction point.

Thefollowing kinds of Dependercy are predefined and may be indicated with
keywords. Note that sme of these correspand to actual nstamodel clas®s and thers
to steredypes of metamodel classes. All of these ae shavn as dasked arows with
keywords in guillemets. The nane column shows the name of the metamodel class @
the informal name of the dasswith the given keyword stereatype.

OMG-UML V1.3 March 2000

Table3-1 Keyword Desciptions

Keyword

Name

De<ription

access

Access

The granting of permission for one package to
reference the public elements owned by anaher
package (subct to appropriate visibility). Maps
into a Pernssion with the stereaype acces.

bind

Binding

A binding of template parameters to actual values
to create a mnparameterized elemert. See
Sedion 3.30, “Bound Element,” on page 3-50 for
more details.Maps irto a Birding.

derive

Derivation

A computale relationship between me element
and another (one more than one of each). Maps into
an Abstractionwith the stereotype dervation.

import

Import

The granting of permission for one package to
reference the puwlic elements d arpther package
togetter with adding the names of the public
elemerts of the sipplier package to the client
package. Maps to a Pernission with the
steedype import.

refine

Refinement

A historical or derivation connection between two
elements witha mapping (nat necessaly conplete)
between them. A description of the mapping may
be attachedto the dependencgy in a note. Various
kinds o refinement have been proposed and can be
indicatedby further stereatyping. Maps intoan
Abstradion with the steretype refinement.

trace

Trace

A historical connection between two elemerts tha
represem the sane concept at different levels of
meanirg. Maps irto an Alstraction with the
steeaype trace.

use

Usage

A situation in which one element requres the
presence o anotherelement for its cormrect
implementation or functioning. May be stereotygd
further to indicate the exact nature of the
depenlengy, suchas cdlin g anoperationof another
class granting permissionfor access and
instantating an dject of anaher class.Mapsinto a
Usage. If th e keyword is one of the steredypes of
Usage ¢all, create instantiate,send) thenit maps
into a Usage wih the given stereotype.

OMG-UML V1.3

Dependency

March 2000 3-83

3-84

3.49.3 Presentation Options

The comection between a note or condraint andthe element it applies to is shown by
a dasked line without an arrowhead. Thisis not a Dependercy.

3.49.4 Example
ClassA [— — — — — =] ClassB |« ClassD
«friend» ~ -
' friend» = ~ - .
| i « > ~ operationZ()
| «instantiate» |
| |
I !
|
L_ _ _«alb_ _ _ | classC
«refine»| .
| ClassC combines
ﬂé _ —— 7 two logical classes
/ N
s N
’ ™
ClassD = ClassE

Figure 3-41 Various Dependences Among Classes

OMG-UML V1.3 March 2000

[1]
el Controller
|
: «access»: ;

|
«access» — ’ :
r-- == I
: . Elements |
| : ; | «access»
|
: ! «access» ! |
y V 1 v v
Domain Graphics
Elements Core

Figure 3-42 Depenencies Among Packages

3.49.5 Mapping

A dashed arrow maps irto the gpropriate kind of Dependency (based on keywords)
betweenthe Elemeants coresmnding to the symbols attachedto the erds of the arrow.
The geredype andthe nane (if any) attacled tothe arrow are the gereaype and name
of the Dependency.

3.50 Derived Hement

3.50.1 Semantics

A deiived elemert is ore that canbe computed from arother one, tut that isshavn for
clarity or that is included for design purposes &en though it adds no semantic
information.

3.50.2 Notation

A derived demert is shown by placing a dash (/) in front of the reme of the derived
element, suchas anattribute or a rolenane.

3.50.3 Style Guidelines

The cetails of conmputing a derived elenment canbe sgedfied by a depenlency with the
steleatype «derive». Usually it is convenient in the rotation to suppressthe dependency
amrow and simply place a canstrant string nearthe delived element, although the arow
can be includedwhen it is helpful.

OMG-UML V1.3 Derived Element March 2000 3-85

3.50.4 Example
Person
_ birthdate
{age = currentDate - birthdate} - — — — — — 1 -~ /age
1
Company O—D Department
employer T
1 employer department
WorksForDepartment
O
U] Person
/WorksForCompany

{ Person.employer=Person.department.employer }

Figure 3-43 Derived Attribute andDerived Association

3.50.5 Mapping

The presere ofa derived acbrnmert (a leadng “/” on the synbol name) on a gymbol
maps irto the attacment o the “derived” tag to the carespading Elemert.

3.51 InstanceOf

3.51.1 Semantics

Shows the connection betweenan instarce ard its classifier.

3.51.2 Notation

Shavn as a dashedarrow with its tail on the instance andits headon the classifer. The
arrow has the keyword «instanceOf».

3.51.3 Mapping

Maps into aninstarce redationship from the instanceto the classifer.

3-86 OMG-UML V1.3 March 2000

