
UML basics

Part III: The class diagram

by Donald Bell

IBM Global Services

In June 2003, I began a series of
articles titled "UML Basics," designed
as an introduction to the Unified
Modeling Language. The first article in
this series provided high-level
introductions to the most widely used
diagrams in the UML; the second
article offered an in-depth look at the
activity diagram.

In this third article, I will focus on the
class diagram. Although almost every
UML-knowledgeable person claims to
understand this diagram, very few actually know the diagram's proper
notation set and consequently do not know how to use the diagram. The
discussion that follows should enable you to understand and draw a proper
class diagram using the UML v1.4 notation set.

This article assumes you have a rudimentary understanding of object-
oriented design. For those of you who need a little assistance with OO
concepts, you might try the Sun brief tutorial about Object Oriented
Programming at http://java.sun.com/docs/books/tutorial/java/concepts/.
Reading the sections "What Is a Class?" and "What Is Inheritance?" should
give you enough understanding to read this article. In addition, David
Taylor's book, Object-oriented Technologies: A Manager's Guide, offers an
excellent, high-level explanation of object-oriented design without
requiring an in-depth understanding of computer programming.

[Editor's note: In Ben Lieberman's article "The art of modeling, Part II,"
also published in this issue (November 2003), Lieberman uses the word
element to refer to "the things that make up a model's contents." Donald
Bell uses the word entity to refer to the same things. In editing their

Copyright Rational Software 2003 http://www.therationaledge.com/content/nov_03/t_modelinguml_db.jsp

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

respective articles, I saw no reason to insist that both writers use the
same word.]

The class diagram's purpose

The purpose of the class diagram is to show the static structure of the
system being modeled. The diagram specifically shows the entities in the
system -- and I literally mean entities, as in "discrete things," not to be
confused with "database entities" -- along with each entity's internal
structure and relationships with other entities in the system. Because class
diagrams only model the static structure of a system, only types of entities
are shown on a class diagram; specific instances are not shown. For
example, a class diagram would show an Employee class, but would not
show actual employee instances such as Donald Bell, Mike Perrow, or
Jimmy Buffett.

Developers typically think of the class diagram as a diagram specifically
meant for them, because they can use it to find out details about the
system's coded classes or soon-to-be-coded classes, along with each
class's attributes and methods.

Class diagrams are particularly useful for business modeling, too. Business
analysts can use class diagrams to model a business's current assets and
resources, such as account ledgers, products, or geographic hierarchy.

The notation

As mentioned earlier, a class diagram models the static structure of
entities. But for the next section of this article, The basics, you can think
of entities as the same thing as classes. That's an oversimplification, but
for now it will make things easier to understand. When you get to the
Beyond the basics section, you will be ready for the fuller, more complex
explanation of entities.

The basics

Modeling the static structure of classes, the class diagram shows each
class's internal structure along with the relationship that the class has to
other classes.

The UML representation of a class -- a class diagram -- is a rectangle
containing three compartments stacked vertically. The top compartment
shows the class's name. The middle compartment lists the class's
attributes. The bottom compartment lists the class's operations. Figure 1
offers a simple example of a class diagram.

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Figure 1: A generic class diagram
showing a single class

Now let's look at a real-world example from the commercial airline
industry. Figure 2 shows an airline flight modeled as a UML class on a
class diagram. As we can see, the name is Flight, and in the middle
compartment we see that the Flight class has three attributes:
flightNumber, departureTime, and flightDuration. In the bottom section we
see that the Flight class has two operations: delayFlight and
getArrivalTime.

Figure 2: Class diagram of the airline class Flight

The class's attribute list

The attribute section of a class (the middle compartment) lists each of the
class's attributes on a separate line. Each attribute line uses the following
format:

name : attribute type

For example,

flightNumber : Integer

Continuing with our Flight class example, we can describe the class's
attributes with attribute type information, as shown in Table 1.

Table 1: The Flight class's attribute names with their associated
types

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Attribute Name Attribute Type

flightNumber Integer

departureTime Date

flightDuration Minutes

In business class diagrams, the attribute types usually correspond to units
that make sense to likely readers of the diagram (i.e., minutes, dollars,
etc.). However, a class diagram that will be used to generate code needs
classes whose attribute types are limited to the types provided by the
programming language, or types included in the model that will also be
implemented in the system.

Sometimes it is useful to show on a class diagram that a particular
attribute has a default value. (In our Flight class example, an airline flight
will rarely be under 60 minutes, because the "flight time" -- flightDuration -
- includes time for the plane to prepare for departure, back out and
proceed to the runway, take off, land, etc.) The UML specification allows
for the identification of default values in the attribute list section by using
the following notation:

name : attribute type = default value

For example:

flightDuration : Minutes = 60

Showing a default value for attributes is optional; Figure 3 shows a
modified version of Figure 2, with the flightDuration attribute showing a
default value of 60 minutes.

Figure 3: A Flight class diagram showing the
flightDuration attribute's value defaulted to 60 minutes

The class's operations list

I mentioned earlier that the class's operations are documented in the third
(lowest) compartment of the class diagram's rectangle. Like attributes, the
operations of a class are displayed in a list format, with each operation on
its own line. Operations are documented using the following notation:

 name(parameter list) : type of value returned

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

The Flight class's operations are mapped in Table 2 below.

Table 2: Flight class's operations mapped from Figure 3

Operation
Name Parameters

Return
Value
Type

delayFlight Name Type

numberOfMinutes Minutes

N/A

getArrivalTime N/A Date

Figure 3 shows that the delayFlight operation has one input parameter --
numberOfMinutes -- of the type Minutes. However, the delayFlight
operation does not have a return value.1 When an operation has
parameters, they are put inside the operation's parentheses; each
parameter uses the format "parameter name : parameter type", which can
include an optional indicator to show whether or not the parameter is
input to, or output of, the operation. This optional indicator appears as an
"[in]" or "[out]" as seen in the delayFlight operation in Figure 3.

Figure 4 shows an example of a Flight class that has an operation called
assignFlightCrew, and the assignFlightCrew operation takes two input
parameters of pilot and coPilot.

Figure 4: The Flight class has an operation called
assignFlightCrew, which takes in two parameters.

Inheritance

A very important concept in object-oriented design, inheritance, refers to
the ability of one class (child class) to inherit the identical functionality of
another class (super class), and then add new functionality of its own.
(Imagine that I inherited my mother's general musical abilities, but in my
family I'm the only one who plays electric guitar.) To model inheritance on
a class diagram, a solid line is drawn from the child class (the class
inheriting the behavior) with a closed arrowhead (or triangle) pointing to
the super class. Consider types of bank accounts: Figure 5 shows how
both CheckingAccount and SavingsAccount classes inherit from the
BankAccount class.

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Figure 5: Inheritance is indicated by a solid line with a closed
arrowhead pointing at the super class.

Associations

When you model a system, certain objects will be related to each other,
and these relationships themselves need to be modeled for clarity. There
are five types of associations. We will discuss bi-directional and uni-
directional associations in this section and the remaining three association
types in the Beyond the basics section. Please note that a detailed
discussion of when to use each type of association is beyond the scope of
this article. Instead, I will focus on the purpose of each association type
and show how the association is drawn on a class diagram.

Bi-directional (standard) association

An association is a linkage between two classes. Associations are assumed
to be bi-directional -- in other words, both classes are aware of their
relationship and of the other class -- unless you qualify the association as
some other type of association. Going back to our Flight example, Figure 6
shows a standard kind of association between the Flight class and the
Plane class.

Figure 6: An example of a bi-directional association between a
Flight class and a Plane class

A bi-directional association is indicated by a solid line between the two
classes. At either end of the line, we place a role name and a multiplicity

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

value. Figure 6 shows that the Flight is associated with a specific Plane,
and the Flight class knows about this association. The Plane takes on the
role of "assignedPlane" in this association because the role name next to
the Plane class says so. The multiplicity value next to the Plane class of
0..1 means that when an instance of a Flight exists, it can either have one
instance of a Plane associated with it or no Planes associated with it (i.e.,
maybe a plane has not yet been assigned). Figure 6 also shows that a
Plane knows about its association with the Flight class. In this association,
the Flight takes on the role of "assignedFlights"; the diagram in Figure 6
tells us that the Plane instance can be associated either with no flights
(e.g., it's a brand new plane) or with up to an infinite number of flights
(e.g., the plane has been in commission for the last five years).

Uni-directional association

A uni-directional association shows that two classes are related, but only
one class knows that the relationship exists. Figure 7 shows an example of
an Overdrawn Accounts report with a uni-directional association.

Figure 7: An example of a uni-directional association: The
OverdrawnAccountsReport class knows about the BankAccount

class, but the BankAccount class does not know about the
association.

A uni-directional association is drawn as a solid line with an open
arrowhead (not the closed arrowhead, or triangle, used to indicate
inheritance) pointing to the known class. Like standard associations, the
uni-directional association includes a role name and a multiplicity value,
but unlike the standard bi-directional association, the uni-directional
association only contains the role name and multiplicity value for the
known class. In our example in Figure 7, the OverdrawnAccountsReport
knows about the BankAccount class, and the BankAccount class plays the
role of "overdrawnAccounts." However, unlike a standard association, the
BankAccount class has no idea that it is associated with the
OverdrawnAccountsReport.2

At this point, I have covered the basics of the class diagram, but do not
stop reading yet! In the following section I will address other useful parts
of this diagram.

Beyond the basics

Above, I discussed bi-directional and uni-directional associations. Now I
will address the three remaining types of associations, and touch upon
interfaces, visibility, and the creation of large class diagrams.

Association class

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

In modeling an association, there are times when you need to include
another class because it includes valuable information about the
relationship. For this you would use an association class that you tie to the
primary association. An association class (also called a drop class by my
former professor) is represented like a normal class. The difference is that
the association line between the primary classes intersects a dotted line
connected to the association class. Figure 8 shows an association class for
our airline example.

Figure 8: Adding the association class (a.k.a. drop class)
MileageCredit

In the class diagram shown in Figure 8, the association between the Flight
class and the
FrequentFlyer class results in an association class called MileageCredit.
This means that when an instance of a Flight class is associated with an
instance of a FrequentFlyer class, there will also be an instance of a
MileageCredit class.

Potential multiplicity
values

For those wondering
what the potential
multiplicity values are
for the ends of
associations, the table
below lists the most
frequently used
multiplicity values
along with their
meanings.

Aggregation

Aggregation is a special type of relationship used
to model a "whole to its parts" relationship. In
basic aggregation relationships, the lifecycle of a
part class is independent from the whole class's
lifecycle.

For example, we can think of Car as a whole
entity and Car Wheel as part of the overall Car.
The wheel can be created weeks ahead of time,
and it can sit in a warehouse before being placed
on a car during assembly. In this example, the
Wheel class's instance clearly lives independently
of the Car class's instance. However, there are
times when the part class's lifecycle is not
independent from that of the whole class -- this
is called composition aggregation. Consider, for
example, the relationship of a bank account to its
transactions. Both Bank Account and
Transactions are modeled as classes, and a
deposit or withdrawal transaction cannot occur
before a bank account exists. Here the

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Potential
Multiplicity Values

Indicator Meaning

0..1 Zero or
one

1 One only

0..* Zero or
more

1..* One or
more

N
Only n
(where n
> 1)

0..n
Zero to n
(where n
> 1)

1..n
One to n
(where n
> 1)

Transactions class's instance is dependent upon
the Bank Account class's instance.

Let's explore basic aggregation and composition
aggregation further.

Basic aggregation

An association with an aggregation relationship
indicates that one class is a subordinate class (or
a part) of another class. In an aggregation
relationship, the child class instance can outlive
its parent class. To represent an aggregation
relationship, draw a solid line from the parent
class to the subordinate class, and draw an
unfilled diamond shape on the parent class's
association end. Figure 9 shows an example of
an aggregation relationship between a Company
and a Department.

Figure 9: Example of an aggregation
association

Composition aggregation

The composition aggregation relationship is just another form of the
aggregation relationship, but the child class's instance lifecycle is
dependent on the parent class's instance lifecycle. In Figure 10, which
shows a composition relationship between a Student class and a Schedule
class, notice that the composition relationship is drawn like the
aggregation relationship, but this time the diamond shape is filled.

Figure 10: Example of a composition relationship

In the relationship modeled in Figure 10, a Student class instance will
always have a Schedule class instance. Because the relationship is a
composition relationship, when the Student instance is
removed/destroyed, the Schedule instance is automatically
removed/destroyed as well.

Reflexive associations

We have now discussed all of the association types. As you may have
noticed, all our examples have shown a relationship between two different
classes. However, a class can also be associated with itself, using

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

recursion. This may not make sense at first, but remember that classes
are abstractions. Figure 11 shows how an Employee class could be related
to itself through the manager/manages role. When a class is associated to
itself, this does not mean that a class's instance is related to itself, but
that an instance of the class is related to another instance of the class.

Figure 11: Example of a reflexive association relationship

The relationship drawn in Figure 11 means that an instance of Employee
can be the manager of another Employee instance. However, because the
relationship role of "manages" has a multiplicity of 0..*, an Employee
might not have any other Employees to manage.

Interfaces

Earlier in this article, I suggested that you think of entities as classes for
the time being but promised a fuller, more complex explanation of entities
later on. Now we are ready for that explanation. The fact is, classes are
entities, but the term entities refers to more things then just classes.
Entities also include things like data types and interfaces.

A complete discussion of when and how to use data types and interfaces
effectively in a system's class diagram is beyond the scope of this article.
So why do I mention data types and interfaces here? There are times
when you might want to model these entity types on a class diagram, and
it is important to use the proper notation for doing so. Drawing these
entity types incorrectly will likely confuse readers of your class diagram,
and the ensuing code will probably not meet requirements.

A class and an interface differ: A class can have an actual instance of its
type, whereas an interface must have at least one class to implement it.
An interface is drawn just like a class, but the top compartment of the
rectangle also has the text "<<interface>>", as shown in Figure 12.3

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Figure 12: Example of a class diagram in which the
Professor and Student classes implement the Person interface

In the diagram shown in Figure 12, both the Professor and Student classes
implement the Person interface and do not inherit from it. We know this
for two reasons: 1) the Person object is defined as an interface -- it has
the "<<interface>>" text in the object's name area, and we see that the
Professor and Student objects are class objects because they are labeled
according to the rules for drawing a class object (there is no additional
classification text in their name area); 2) we know inheritance is not being
shown here, because the line with the arrow is dotted and not solid. As
shown in Figure 12, a dotted line with a closed, unfilled arrow means
realization (or implementation); as we saw in Figure 5, a solid arrow line
with a closed, unfilled arrow means inheritance.

Visibility

In object-oriented design, there is a notation of visibility for attributes and
operations. UML identifies four types of visibility: public, protected,
private, and package.

The UML specification does not require attributes and operations visibility
to be displayed on the class diagram, but it does require that it be defined
for each attribute or operation. To display visibility on the class diagram,
you place the visibility mark in front of the attribute's or operation's name.
Though UML specifies four visibility types, an actual programming
language may add additional visibilities, or it may not support the UML-
defined visibilities. Table 3 displays the different marks for the UML-
supported visibility types.

Table 3: Marks for UML-supported visibility types

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

Mark Visibility
type

+ Public

Protected

- Private

~ Package

Now, let's take a look at a class that shows the visibility types indicated for
its attributes and operations. In Figure 13, all the attributes and
operations are public, with the exception of the updateBalance operation.
The updateBalance operation is protected.

Figure 13: A BankAccount class that shows
the visibility of its attributes and operations

Large class diagrams

Inevitably, if you are modeling a large system or a large business area,
there will be numerous entities you must consider. Instead of modeling
every entity and its relationships on a single class diagram, it is better to
use multiple class diagrams. Dividing a system into multiple class
diagrams makes the system easier to understand, especially if each
diagram is a graphical representation of a specific part of the system.

Placing notes and comments on class diagrams

Typically, class diagrams are accompanied by comments or notes about
each class, and/or its relationships, attributes, and operations. These
notes can be placed directly on the class diagram, or, better yet,
associated with each level (e.g. class, attribute, etc.). IBM Rational Rose®
and IBM Rational XDE® allow notes to be associated with each level, as
needed, and IBM Rational SoDA® can generate a report that neatly
includes this documentation in a Word document.

Conclusion

The class diagram is important because it shows the static structure of the
entities in a system. Developers may think that class diagrams are created
specially for them, but business analysts can also use class diagrams to
model business systems. As we will see in other articles in this series on
UML basics, other diagrams -- including the activity, sequence, and
statechart diagrams -- refer to the entities modeled and documented on

The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

the class diagram.

Next in this series on "UML basics": the sequence diagram.

Notes

1The delayFlight does not have a return value because I made a design decision not to have
one. One could argue that the delay operation should return the new arrival time, and if this
were the case, the operation signature would appear as delayFlight(numberOfMinutes :
Minutes) : Date.

2It may seem strange that the BankAccount class does not know about the
OverdrawnAccountsReport class. The modeling allows report classes to know about the
business class they report about, but the business classes do not know they are on reports.
The reason for doing this is that it loosens the coupling of the objects and therefore makes
the system more adaptive to changes.

3When drawing a class diagram it is completely within UML specification to put <<class>> in
the top compartment of the rectangle, as you would with <<interface>>; however, the UML
specification says that placing the <<class>> text in this compartment is optional, and it
should be assumed if <<class>> is not displayed.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2003 | Privacy/Legal Information

	rational.com
	The Rational Edge -- November 2003 -- UML basics Part III: The class diagram

