
1

CIS 771: Software Specifications

Lecture 13: More OCL

Copyright 2001-2002, Matt Dwyer, John Hatcliff, and Rod Howell. The syllabus and all lectures for this course are
copyrighted materials and may not be used in other course settings outside of Kansas State University in their current
form or modified form without the express written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

CIS 771 -- More OCL 2

Outline

n OCL type hierarchy
n Collection operations
n Using collection operations in invariants

…with the Academia model as the running example.

2

CIS 771 -- More OCL 3

Subtyping
n If T1, T2 are model types then T1 < T2 holds exactly

when T1 is a subclass of T2 in a class diagram
n Integer < Real
n For all type expressions T, not denoting a collection

type,
n Set(T) < Collection(T)
n Sequence(T) < Collection(T)
n Bag(T) < Collection(T)

n If T is a model, basic, or enumeration type
then T < OclAny

n If T1 < T2 and C is any of the type constructors
Collection, Set, Bag, Sequence, then C(T1) < C(T2)

n The relation < is transitive
n For any OCL type T, T:OclType

CIS 771 -- More OCL 4

Examples
n Grad < Student < Person, so Grad < Person

n … because < is transitive

n Collection(Grad) < Collection(Person)
n … because Grad < Person

n Set(Grad) < Collection(Grad)
n … because Set is a Collection type

n Set(Grad) < Collection(Person)
n … because Set is a Collection type and Grad < Person

3

CIS 771 -- More OCL 5

Examples
n Grad < OclAny

n … because OclAny is a supertype of any model type

n Integer < OclAny
n … because OclAny is the supertype of any basic type

n Set(Grad) !< OclAny
n … because OclAny is NOT the supertype of a collection

type

n Grad: OclType, Set(Grad):OclType, OclAny:OclType
n … because OclType is the type of every OCL type

CIS 771 -- More OCL 6

For You To Do…

n Is Bag(Grad) < Set(Person)?
n Is Grad: OclAny?
n Is 5: OclAny?
n Is Sequence(Student) < Set(Person)?
n Is 5 < Integer?
n Is Bag(Grad) < Collection(OclAny)?
n Is Sequence(Grad) < Bag(Grad)?
n Is Set(Integer): OclType?

4

CIS 771 -- More OCL 7

Basic Collection Operations

n collection->includes(object: OclAny): Boolean
n collection->excludes(object: OclAny): Boolean

Membership tests

Examples

(robby, cis771)
(oksana, cis771)
(william, cis771)

Taking
cis771.enrolled->includes(robby)

…is true

cis771.enrolled->excludes(adam)
…is true

robby.taking->includes(cis775)
…is false

enrolled taking

CIS 771 -- More OCL 8

Basic Collection Operations

n collection->includesAll(c2: Collection(T)): Boolean
n collection->excludesAll(c2: Collection(T)): Boolean

Inclusion tests

Examples

(robby, cis771)
(oksana, cis771)
(william, cis771)

cis771.enrolled
->includesAll(Set {robby,oksana})
…is true

cis771.enrolled
->excludesAll(Bag {adam, adam})
…is true

Takingenrolled taking

(see OMG-UML v1.3 Section 7.6.1 pp. 7.22-7.23)

Notation for set and
bag literals

5

CIS 771 -- More OCL 9

Select

n collection->select(exp: Boolean)
n …yields the sub-collection of components satisfying

the condition exp

Select

(robby, robbyId)
(oksana, oksanaId)
(william, williamId)

number=104

robbyId: Id

Example

Id.allInstances->select(number > 150)
…Set{oksanaId,williamId }: Set(Id)

number=156

oksanaId: Id

number=200

williamId: Id

CIS 771 -- More OCL 10

Reject

n collection->reject(exp: Boolean)
n …returns a collection with the components satisfying

the condition exp removed from the original collection

Select

(robby, robbyId)
(oksana, oksanaId)
(william, williamId)

number=104

robbyId: Id

Example

Id.allInstances->reject(number > 150)
…Set{robbyId}: Set(Id)

number=156

oksanaId: Id

number=200

williamId: Id

6

CIS 771 -- More OCL 11

Alternate Forms
n A variable (called the iterator) can be introduced to

refer to the items in the resulting collection directly

n collection->select(v | exp-with-v: Boolean)
n collection->select(v : Type | exp-with-v: Boolean)

n v iterates over the collection and the exp-with-v is
evaluated for each v. The result is the collection
containing the items for which exp-with-v is true.

n Id.allInstances->select(id | id.number > 150)

n ..similarly for ‘reject’

CIS 771 -- More OCL 12

Collect

n select and reject always result in sub-collections of the
original collection

n When we we want to specify a collection which is
derived from some other collection, but which is not a
sub-collection, we can use a collect operation.

n collection->collect(exp)
n collection->collect(v | exp-with-v)
n collection->collect(v : Type | exp-with-v)

n Example
n robby.taking->collect(number)
n robby.taking.number …abbreviation (matches Alloy)

n The result of the collect operation is always a bag!

(see OMG-UML v1.3 Section 7.6.2 pp. 7.24-7.25)

7

CIS 771 -- More OCL 13

Example
Consider the Academia constraint…
No one is taking or waiting for a course unless they have already taken
all the prerequisites

context s:Student
inv PrerequisitesRequired:

s.transcript
->includesAll(s.taking.prerequisites

->union(s.waitingFor.prerequisites))

Collection operation applied
to obtain the bag of
prerequisites for all courses
that s is taking (waitingFor)

This is the union operation for bags

Note: the prerequisite bags above may contain duplicate courses, e.g., if the
same course is a prerequisite for multiple courses being taken.

CIS 771 -- More OCL 14

For You To Do…
n Pause the lecture
n Download the academia-4.use file
n Add to this file the class, association and invariant declarations for

the extension to the Academia model described on the next two
slides

n Load the resulting model into USE
n Create some system snapshots

n some that satisfy your invariants
n some that violate your invariants
n you can build off of the

academia-basic-instantiation.cmd script
n Use the USE command line to enter in some expressions for USE to

evaluate (type ‘help’ to see syntax), e.g.,
n use> ? cis771.enrolled->includes(robby)

n In your examples, explore the differences between sets and bags
n You may notice the appearance of the ‘undefined’ value in your results.

What implications does that have for us?

8

CIS 771 -- More OCL 15

I. Academia State

n Add an unique ID attribute for students
n since we have integers and strings in OCL,

there is more than one way to model IDs
n Add student transcripts

n a transcript gives a set of courses associated
with a student (the courses that a student
has completed)

n Add prerequisite structure for courses
n relates a course to courses that are

prerequisites for it

CIS 771 -- More OCL 16

I. Academia Constraints
n Enforce the uniqueness constraint for IDs
n A student can only take a course for which they

have already taken the prereqs
n A course does not have itself as a prerequisite

n An even stronger requirement is that there are no
cycles in the prerequisite structure (can you do this
one?)

n Realism: that there exists a course with
prerequisites that someone is enrolled in

9

CIS 771 -- More OCL 17

ForAll

n collection->forAll(exp: Boolean)
n …returns true if exp holds for all objects in the

collection

Select

(robby, robbyId)
(oksana, oksanaId)
(william, williamId)

number=104

robbyId: Id

Example

Id.allInstances->forAll(number > 150)
…false

number=156

oksanaId: Id

number=200

williamId: Id

(see OMG-UML v1.3 Section 7.6.3 pp. 7.25-7.26)

CIS 771 -- More OCL 18

Exists

n collection->exists(exp: Boolean)
n …returns true if there is at least one object in the

collection for which exp holds

Select

(robby, robbyId)
(oksana, oksanaId)
(william, williamId)

number=104

robbyId: Id

Example

Id.allInstances->exists(number > 150)
…true

number=156

oksanaId: Id

number=200

williamId: Id

(see OMG-UML v1.3 Section 7.6.3 pp. 7.25-7.26)

10

CIS 771 -- More OCL 19

Example
Consider the Academia constraint…
Only faculty members teach required courses

context d:Department
inv FacultyTeachReqCourses:

d.required.taughtby
->forAll(i:Instructor |

i.instructor.oclIsKindOf(Faculty))

Collection operation applied
to obtain the bag of all
instructors that teach
required courses in
department d

CIS 771 -- More OCL 20

Alternate Forms
n We have the same sort of alternate forms as before

n collection->forAll(exp: Boolean)
n collection->forAll(v | exp-with-v: Boolean)
n collection->forAll(v : Type | exp-with-v: Boolean)

n In addition, if we need two quantified variables, we can
use an abbreviation as in the following example…
n Id.allInstances

->forAll(id1, id2 | id1 = id2 implies id1.number = id2.number)

n The above is semantically equivalent to…
n Id.allInstances

->forAll(id1 | Id.allInstances
->forAll(id2 | id1 = id2 implies id1.number = id2.number))

(see OMG-UML v1.3 Section 7.6.3 pp. 7.25-7.26)

11

CIS 771 -- More OCL 21

Iterate

n collection->iterate(v : Type;
acc : Type = exp

| exp-with-v-and-acc)

n v iterates over the collection and the exp-with-v-and-acc is
evaluated for each value of v.

n After each evaluation of exp-with-v-and-acc, its value is
assigned to acc.

n In this way, the value of acc is built up during the iteration of
the collection.

Generic iteration scheme that can be used to define all of
the collection operations that we have seen so far.

(see OMG-UML v1.3 Section 7.6.3 pp. 7.25-7.26)

Iterator variable

Accumulator
variable

Initial value of
accumulator

Iteration
expression

CIS 771 -- More OCL 22

Iterate
Example

collection->collect(x : T | x.property)

collection->iterate(x : T; acc : T2 = Bag {} |
acc->including(x.property))

…is semantically equivalent to…

12

CIS 771 -- More OCL 23

Iterate
As it would be coded in Java-like pseudo-code

iterate(v : T, acc : T2 = value)
{

acc = value;
for (Enumeration e = collection.elements();

e.hasMoreElements();) {
v = e.nextElement();
acc = <exp-with-v-and-acc>

}
}

CIS 771 -- More OCL 24

For You To Do…
n Pause the lecture
n Download the academia-5.use file
n Add to this file the class, association and invariant declarations for

the extension to the Academia model described on the next four
slides

n Load the resulting model into USE
n Create some system snapshots

n some that satisfy your invariants
n some that violate your invariants
n you can build off of the

academia-extension1-instantiation.cmd script
n Use the USE command line to enter in some expressions for USE to

evaluate (type ‘help’ to see syntax), e.g.,
n use> ? cis771.enrolled->includes(robby)

n In your examples, code up some of your collection operations using the
iterate operation

13

CIS 771 -- More OCL 25

II. Academia State

n Add Departments
n Instructors per
n Courses per
n Required courses
n Student majors

n Add Faculty-Grad student relationships
n Advisor
n Thesis committee

CIS 771 -- More OCL 26

II. Department Associations
n Each faculty is in a single department.

n Each department has at least one faculty.

n Each department offers some courses
n Courses are offered in exactly one department

n Each department requires some courses
n Courses are required in at most one department

n Each student has a single department as his/her
major
n i.e., a department

14

CIS 771 -- More OCL 27

II. Faculty-Student Associations

n A graduate student has exactly one
faculty member as an advisor.

n A faculty member serves on five or fewer
graduate student committees.

CIS 771 -- More OCL 28

II. Academia Constraints
n Advisors are on their student’s committees
n Students are advised by faculty in their major
n Only faculty teach required courses
n Required courses are a subset of the courses for

a major
n Students must take at least one course from

their major each semester
n Realism: There are at least two departments

and some required courses.

15

CIS 771 -- More OCL 29

Acknowledgements
n Material for this lecture is based on the following sources

n Chapter 7 (the OCL chapter) of the OMG-UML specification (version 1.3 – March
2000)

