
1

CIS 771: Software Specifications

Lecture 14:
Advanced OCL Expressions

Copyright 2001-2002, Matt Dwyer, John Hatcliff, and Rod Howell. The syllabus and all lectures for this course are
copyrighted materials and may not be used in other course settings outside of Kansas State University in their current
form or modified form without the express written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

CIS 771 -- Advanced OCL Expressions 2

Outline

n Coding transitive closure with recursion
n Useful expressions
n Undefined values
n Meta-modeling

…with the Academia model as the running example.

2

CIS 771 -- Advanced OCL Expressions 3

Transitive Closure in OCL

n OCL does not have a primitive operation
for transitive closure

n OCL does allow recursion
n We must implement transitive closure

directly in terms of recursion

CIS 771 -- Advanced OCL Expressions 4

Transitive Closure in OCL
Consider the following definitions (transitive-closure-1.use)

class A
end

association R between
A role pred
A role succ

end

We can attempt to code the transitive closure of R as follows

class A
operations

closure() : Set(A) =
succ.closure()->asSet()->including(self)

end

3

CIS 771 -- Advanced OCL Expressions 5

Transitive Closure in OCL
Consider the following instantiation
(transitive-closure-instantiation-1.cmd)

An example evaluation

!create a1:A
!create a2:A
!create a3:A
!insert (a1,a2) into R
!insert (a2,a3) into R

use> ? a1.closure()
-> Set{@a1,@a2,@a3} : Set(A)

CIS 771 -- Advanced OCL Expressions 6

Transitive Closure in OCL
What is happening on a1.closure?

Tracing the evaluation through the recursion…

Level 1 call: self = a1, a1.succ = a2
Level 2 call: self = a2, a2.succ = a3
Level 3 call: self = a3, a3.succ = {}
Level 3 return: Set{@a3}
Level 2 return: Set{@a2,@a3}
Level 1 return: Set{@a1,@a2,@a3}

class A
operations

closure() : Set(A) =
succ.closure()->asSet()->including(self)

end

4

CIS 771 -- Advanced OCL Expressions 7

For You To Do…

n Pause the lecture…
n Load the model in transitive-closure-1.use into USE
n Run the script

transitive-closure-instantiation-1.cmd
n Now give the following command at the USE command

line
use> ? a1.closure()

n what happens?

n Now give the following commands at the USE command
line
use> !insert (a3,a1) into R
use> ? a1.closure()

n what happens? why? can you fix the problem?

CIS 771 -- Advanced OCL Expressions 8

Transitive Closure in OCL
Consider the following instantiation
(transitive-closure-instantiation-2.cmd)

An example evaluation

!create a1:A
!create a2:A
!create a3:A
!insert (a1,a2) into R
!insert (a2,a3) into R
!insert (a3,a1) into R

use> ? a1.closure()
…java.lang.RuntimeException: StackOverflow…

5

CIS 771 -- Advanced OCL Expressions 9

Assessment

n The problem is that we have an infinite
path through R and the closure operation
doesn’t know how to stop.

n Intuitively, we should stop when we have
collected all the elements that we
encounter when walking across R starting
from the initial value (e.g., a1).

n In other words, we should stop when we
don’t find anything “new” when walking
across R.

CIS 771 -- Advanced OCL Expressions 10

If-then-else

n if bool-expr then expr1 else expr2 endif
n Returns expr1 if bool-expr is true
n Returns expr2 if bool-expr if false
n Undefined if bool-expr is undefined

…we can use the if-then-else construct to help us
code an appropriate transitive closure operation

6

CIS 771 -- Advanced OCL Expressions 11

Transitive Closure in OCL
The correct coding of (reflexive) transitive closure

closure(s : Set(A)) : Set(A) =
if s->includesAll(s.succ->asSet) then s
else closure(s->union(s.succ->asSet))
endif

Note: the closure is reflexive
because argument s must be
included in the result

reachableFromSelf() : Set(A) = closure(Set{self})

An initial call to compute reflexive transitive closure of {self}

Note: stop when we don’t
find anything new via R
(succ) to add to s.

CIS 771 -- Advanced OCL Expressions 12

Transitive Closure in OCL
What is happening on a1.reachableFromSelf() ?

Tracing the evaluation through the recursion…

Level 1 call: s = {@a1}, s.succ = {@a2}
Level 2 call: s = {@a1,@a2}, s.succ = {@a2,@a3}
Level 3 call: s = {@a1,@a2,@a3}, s.succ = {@a1,@a2,@a3}
Level 3 return: Set{@a1,@a2,@a3}
Level 2 return: Set{@a1,@a2,@a3}
Level 1 return: Set{@a1,@a2,@a3}

class A
operations
closure(s : Set(A)) : Set(A) =
if s->includesAll(s.succ->asSet) then s
else closure(s->union(s.succ->asSet))
endif

reachableFromSelf() : Set(A) = closure(Set{self})
end

7

CIS 771 -- Advanced OCL Expressions 13

For You To Do…

n Pause the lecture…
n Load the model in transitive-closure-2.use into USE
n Run the script

transitive-closure-instantiation-2.cmd
Note that this script adds (a3,a1) to R to create a cycle
in R

n Now give the following command at the USE command
line
use> ? a1.reachableFromSelf()

n what happens? why?

CIS 771 -- Advanced OCL Expressions 14

Enumeration Types (per OCL spec)

General Form

enum {value1, value2, …, valuen}

Example: Academia Grades

enum {A, B, C, D, F, X, W}

Enumeration Values

#A, #B, #C, #D, #F, #X, #W

8

CIS 771 -- Advanced OCL Expressions 15

Enumeration Types (per USE)

General Form – declare an enum type (e.g., at top of model)

enum TypeName {value1, value2, …, valuen}

Example: Academia Grades

enum Grade {A, B, C, D, F, X, W}
…
class TranscriptEntry
attributes

course : Course
grade : Grade

end

use> create e:TranscriptEntry
use> !set e.grade = #A

CIS 771 -- Advanced OCL Expressions 16

Ordered Associations

n Sometimes we want the result of
navigating an association to be a
sequence.

n Example:

association offspring between
Person[0..2] role parents
Person[*] role children ordered

end

n Then p.children is a sequence.

9

CIS 771 -- Advanced OCL Expressions 17

Operations on Sequences

n s->at(i) the ith element of s
n s->first() the first element of s
n s->last() the last element of s
n s->append(a) adds a to end
n s->prepend(a) adds a to front
n s->asSet() converts to a set

CIS 771 -- Advanced OCL Expressions 18

let Expressions

n let x : Type = expr1 in expr2

n evaluates expr2 with each occurrence of x
replaced by the value of expr1

n avoids evaluating the same expression
multiple times

10

CIS 771 -- Advanced OCL Expressions 19

Example

context Person inv:
let income : Integer = self.job.salary->sum in
if isUnemployed then

income < 100
else

income >= 100
endif

CIS 771 -- Advanced OCL Expressions 20

Helper Operations

...
let x : Type1 = expr1 in

...

...x...

...

...x...
...

...
f(expr1)
...

f(x : Type1) : Type2 =
...
...x...
...
...x...

11

CIS 771 -- Advanced OCL Expressions 21

For You To Do…
n Pause the lecture…
n Extend the model in academia-7.use as follows…

n This model already contains an extension to academia-5.use that adds
grades as an enumeration type to a TranscriptEntry class as done
earlier in the lecture.

n In the Transcript association, declare transcriptEntries to be ordered.
n Using an enumeration type, add a status attribute to Student that can

take on the values #Normal or #Probation.
n Write an invariant that says that a student’s status is normal iff they

only have grades of A’s and B’s on their transcript. For this invariant,
you may want to use a let expression since USE has no iff construct as
a primitive. Specifically, you have to use implies twice and re verse the
order of the arguments. Use a let to avoid duplicating large
expressions.

n Using transitive closure, add an invariant that states that there are no
cycles in the prerequisite structure for courses.

n Write a script to test your extensions.

CIS 771 -- Advanced OCL Expressions 22

Undefined Expressions

n Some expressions that can be undefined
n object.oclAsType(T)

n …undefined when type of object has no subtype T

n sequence->at(i)
n …undefined when i is greater than length of

sequence

n sequence->subSequence(i,j)
n …undefined when i,j lie outside the bounds of the

sequence or when i > j

n etc,

12

CIS 771 -- Advanced OCL Expressions 23

Undefined Expressions

n Undefined expressions tend to propagate
n if bool-expr then expr-1 else expr-2

n …undefined if bool-expr is undefined

n …many other examples

n Exceptions:
n true or anything = true
n false and anything = false

CIS 771 -- Advanced OCL Expressions 24

For You To Do…

n Pause the lecture…
n Create some expressions whose values

are undefined.
n Create some expressions where undefined

values are propagated.
n Create some examples where and and or

absorb the undefined values.

13

CIS 771 -- Advanced OCL Expressions 25

Collections are Flat (per OCL)

n In OCL,
Set{Set{1, 2}, Set{2, 3}}
and
Set {1, 2, 3}
have the same value.

n This happens implicitly and is beyond
your control.

(see OMG-UML v1.3 Section 7.5.13 p.7.20)

CIS 771 -- Advanced OCL Expressions 26

Collections
Are Usually Not Flat (per USE)

n In USE, Collection types can be nested to
any level, e.g.,
n Bag(Set(Sequence(Person))).

n Implicit flattening is only done when used
with the shorthand notation for collect.

(see README.OCL in USE distribution)

14

CIS 771 -- Advanced OCL Expressions 27

Collections
Are Usually Not Flat (per USE)

n You can always explicitly flatten a
collection with the flatten operation that
has been added in USE.

n For example,

(see README.OCL in USE distribution)

company.branches->collect(c | c.employees)

results in Bag(Set(Employee)). This result value can be flattened
into a Bag(Employee) by using the following expression:

company.branches->collect(c | c.employees)->flatten

CIS 771 -- Advanced OCL Expressions 28

For You To Do…

n Pause the lecture…
n Try some examples of nested collections

in USE (e.g., you can even use the
transitive-closure models, and then define
collections as literals)

n Flatten them with the flatten operation

(see OMG-UML v1.3 Section 7.8.1.1 po.7.28-7.29)

15

CIS 771 -- Advanced OCL Expressions 29

Meta Properties

n type.name : String
n type.attributes : Set(String)
n type.associationEnds : Set(String)
n type.operations : Set(String)
n type.supertypes : Set(OclType)
n type.allSupertypes : Set(OclType)
n type.allInstances : Set(type)

Note: it appears that only the last property is supported in USE.

CIS 771 -- Advanced OCL Expressions 30

Acknowledgements
n Material for this lecture is based on the following sources

n Chapter 7 (the OCL chapter) of the OMG-UML specification (version 1.3 – March
2000)

