
1

CIS 771: Software Specifications

Lecture 12: OCL Basics

Copyright 2001-2002, Matt Dwyer, JohnHatcliff, and Rod Howell. The syllabus and all lectures for this course are
copyrighted materials and may not be used in other course settings outside of Kansas State University in their current
form or modified form without the express written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

CIS 771 -- OCL Basics 2

Outline

n Review of how to declare class and
association structures in USE

n OCL Types
n OCL Invariant Syntax
n Navigating across attributes and

associations
n Collection and set operations

…with the Academia model as the running example.

2

CIS 771 -- OCL Basics 3

“Academia” Modeling Example

n We will model an academic enterprise
expressing relationships between
n People

n Faculty

n Students
n Graduate
n Undergraduate

n Instructors – which can be grad students or faculty

n Courses
n Academic departments
n Personal ID numbers

How should we model these basic domains in OCL/USE?

CIS 771 -- OCL Basics 4

Strategy
n Build and validate your model incrementally

n Start with basic entities (as classes) and relations (as
associations)

n Add multiplicities
n Instantiate the model and study the results
n Add invariants
n Generate (both conforming and non-conforming)

snapshots and study the results
n Add groups of features at a time

n New classes, associations, multiplicities
n New invariants
n Confirm previous invariants
n Probe new features with extended snapshots

3

CIS 771 -- OCL Basics 5

Basic Entities
n People

n Students: Undergrads and Grads
n Instructors: Faculty and Grads

n Courses

n We’ll talk about some general issues regarding modeling
using classes and generalization,

n I’ll do a few examples,
n You’ll do a few examples, and
n We’ll assess the results.
n Then we’ll go onto relations (associations)

What we’ll do now…

CIS 771 -- OCL Basics 6

Generalization

n When modeling, you often want to express that
one type of entity is a special case of another
n or symmetrically, that one type of entity generalizes

another
n Note that Person generalizes Faculty

n symmetrically, Faculty specializes/refines Person
n A faculty member has all the attributes of a

person, but it refines person by adding additional
attributes or more specialized behavior

n We sometimes say Faculty “is a” Person
n Using other common terminology, Faculty

conforms to Person

4

CIS 771 -- OCL Basics 7

Modeling Generalization in Alloy

model Academia {
domain {Person, Course}

state {
partition Faculty, Student : Person
…

}

n Faculty “is a” Person is modeled by saying
that the set of Faculty entities is a subset of
the set of Person entities

n Thus, every Alloy constraint/relation that
applies to Person also applies to Faculty

Fragment of Alloy Academia model

CIS 771 -- OCL Basics 8

Modeling Generalization in UML/USE

model Academia

class Person
attributes

name : String
end

n In UML, the notion of generalization is a
primitive notion, and so we model
generalization directly
n In USE’s textual form, Faculty < Person
n In diagrams using the arrow

Starting the USE Academia model

class Faculty < Person
end

5

CIS 771 -- OCL Basics 9

For You To Do…

n Pause the lecture
n Download the academia-1.use file
n Add to this file the remainder of the class

declarations and generalization relationships for
n Student
n Grad student
n Undergrad student
n Instructor
n Course

n Load the resulting model into USE (so that it
can check your syntax)

n Create some system snapshots

CIS 771 -- OCL Basics 10

Assessment

n Recall that in Alloy, we did the following…

Dealing with Instructor…

Note that we cannot specify here that
Instructors can only be grad students or faculty.
We will do that later in an invariant schema.

Instructor : Person

n Really, what we want to say is that…
n Instructor “is a” Faculty, or
n Instructor “is a” Grad

6

CIS 771 -- OCL Basics 11

Assessment
Dealing with Instructor… considering multiple inheritance

n Note that UML allows multiple inheritance
n One Option…

class Instructor < Faculty, Grad
end

n But this specifies that an instructor implements the
behavior (conforms to, is-a) Faculty and a Grad

CIS 771 -- OCL Basics 12

Assessment
Dealing with Instructor… considering multiple inheritance

n Another option…

class Instructor < Person end
class Student < Person end
class Faculty < Instructor end
class Grad < Student, Instructor end

n But this specifies that, e.g., every Grad is an
Instructor

7

CIS 771 -- OCL Basics 13

Assessment

n In Java, we could have Faculty and Grad both
implement an Instructor interface
n USE doesn’t provide modeling of interfaces

n We could also implement Instructor as an
adapter class

Dealing with Instructor… several possible solutions

class Instructor
attributes
instructor:Person

end

Note that we cannot specify here that
Instructors can only be grad students or faculty.
We will do that later in an invariant.

Same situation as in Alloy!

n We’ll just use the adaptor approach

CIS 771 -- OCL Basics 14

Basic Relations
n Relationships

n One instructor teaches a course.
n One or more students are taking a course.
n Students can be waitingfor for course.

n Relations are modeled as associations in UML

n We’ll review the syntax for defining associations
n We’ll see that UML has richer notation for multiplicities
n We’ll talk about role names and how to use them to

navigate across associations
n You’ll do some examples from the Academia model

What we’ll do now…

8

CIS 771 -- OCL Basics 15

‘Teaches’ Association

-- Teaching: one instructor teaches a course

association Teaches between
Instructor[1] role taughtBy
Course[*] role coursesTaught

end

CIS 771 -- OCL Basics 16

‘Teaches’ Association

-- Teaching: one instructor teaches a course

association Teaches between
Instructor[1] role taughtBy
Course[*] role coursesTaught

end

Comment Association Name

Participating
Classes

Multiplicities

Roles

9

CIS 771 -- OCL Basics 17

Assessment

association Teaches between
Instructor[1] role taughtBy
Course[*] role coursesTaught

end

teaches (~taughtby) : Instructor! -> Course*

OCL/USE

Alloy

Participant
Names

Multiplicities

Names for navigation

CIS 771 -- OCL Basics 18

Multiplicities
n OCL multiplicities are much more general than

Alloy’s
n A OCL multiplicity is specified by a comma-

separated list of integer intervals, each of the
form
n minimum..maximum where minimum and maximum

are integers, or maximum can be a “*” which indicates
an unbounded upper limit

n Examples

(Source: UML Reference Manual (1999), pp. 346-347)

0..1
1
0..*
*

2..5
1..*
1..4,7..9
1..3,7..10,15,19..*

10

CIS 771 -- OCL Basics 19

Role Names

n Role names are used to navigate between classes
n Role names are the names of “pseudo-attributes” whose values are

the sets of objects that result from navigating across the
association

n For c:Course, c.taughtBy yields the instructor object that
teaches the course

n For i:Instructor, i.coursesTaught yields the set of
course objects representing courses taught by I

n If explicit role names are omitted, the default is the name of the
participating class (using lowercase), e.g., c.instructor

Instructor CourseTeaches

taughtBy coursesTaught

1 *

CIS 771 -- OCL Basics 20

Role Names

n For c:Course, c.taughtBy yields the instructor object that
teaches the course, e.g.,
n cis771.taughtBy = hatcliff

n For i:Instructor, i.coursesTaught yields the set of
course objects representing courses taught by I, e.g.,
n hatcliff.coursesTaught = {cis842, cis771}

Instructor CourseTeaches

taughtBy coursesTaught

1 *

…
(hatcliff, cis842)
(hatcliff, cis771))
(howell, cis775)
(dwyer, cis801)

…

pairs in the Teaches
association

11

CIS 771 -- OCL Basics 21

For You To Do…

n Pause the lecture
n Download the academia-2.use file
n Add to this file the association declarations (with

multiplicities) for the relations
n teaches,
n taking, and
n waitingfor.

n Load the resulting model into USE
n Create some system snapshots

n some that satisfy your multiplicity constraints
n some that violate your multiplicity constraints

CIS 771 -- OCL Basics 22

Some Hints on Using USE

n Type ‘help’ at the USE command line to
see all the things that you can do with it.

n Notice that one of the options is the read
command which reads from a file a
sequence of commands for creating
snapshots.
n You should use the option for the rest of the

lecture to re-populate your model with
interesting instances after each revision of
your model.

12

CIS 771 -- OCL Basics 23

A Example Command Script
academia-basic-instantiation.cmd

!create hatcliff:Faculty
!create howell:Faculty
!create robby:Grad
!create william:Grad
!create oksana:Grad
!create cis771:Course
!create cis775:Course
!create instrHatcliff:Instructor
!set instrHatcliff.instructor = hatcliff
!create instrHowell:Instructor
!set instrHowell.instructor = howell
!insert (instrHatcliff,cis771) into Teaches
!insert (instrHowell,cis775) into Teaches
!insert (robby,cis771) into Taking
!insert (william,cis771) into WaitingFor
!insert (oksana,cis775) into Taking

Notes: Load this into USE using the ‘read’ command at the command line (after completing the last
‘For you to do’ or opening academia-3.use When you get to this level, it’s often best to turn off the
‘check structure at every stage’ option in the State menu. With this option off, you just force a check
by e.g., giving the ‘check’ command at the command line. Note that at the end of this script, there are
no structural violations. However, there are structural violations at intermediate steps (as you can see
if you have the ‘check structure at every stage’ option turned on).

CIS 771 -- OCL Basics 24

Screen Shot After Script

13

CIS 771 -- OCL Basics 25

Class Diagram

Person

name : String

Faculty Student

UnderGrad Grad

Course

Instructor

1

*

Teaches
coursesTaught

taughtBy

instructor: Person

Taking
1..*

*

enrolled

taking

WaitingFor
*

* waitingList

waitingFor

name : String
number: Integer

CIS 771 -- OCL Basics 26

Basic Invariants

n All instructors are either faculty or
graduate students.
n Couldn’t be expressed in class definitions

n No one is waiting for a course unless
someone is enrolled.

n No graduate student teaches a course
that they are enrolled in.

How should we model these as invariants in OCL/USE?

14

CIS 771 -- OCL Basics 27

Basic Invariants

n We’ll go over the basic structure of invariants
n there are several variations

n We’ll look at the types of expressions that can
be used in OCL invariants

n We’ll cover just enough to allow us to specify
the constraints on the previous slide

n There’s a lot more to cover…
n Read the OMG-OCL specification
n We won’t cover everything in the lectures
n We will get into more details in the next lecture

What we’ll do now…

CIS 771 -- OCL Basics 28

OCL Invariants
General form

context id : Class
inv name: bool-expr --- first invariant for Class
…
inv name: bool-expr --- nth invariant for Class

Example

context i : Instructor
inv InstructorIsFacultyOrGrad:

i.instructor.oclIsKindOf(Faculty)
or i.instructor.oclIsKindOf(Grad)

15

CIS 771 -- OCL Basics 29

OCL Invariants
Abbreviated Forms

-- drop the instance name and use ‘self’
context Instructor

inv InstructorIsFacultyOrGrad:
self.instructor.oclIsKindOf(Faculty)

or self.instructor.oclIsKindOf(Grad)

-- drop the invariant name (it’s now anonymous)
context Instructor

inv:
self.instructor.oclIsKindOf(Faculty)

or self.instructor.oclIsKindOf(Grad)

Next, let’s see what sorts of expressions we can use in
invariants

CIS 771 -- OCL Basics 30

OCL Types

n Model types
n Every class name from the context of an OCL

constraint can be used as a type, e.g., Instructor

n Basic types
n Integer, Real, Boolean, and String

n Collection types
n Set, Bag, Sequence

n Enumeration types
n User-defined

n Special types
n e.g, OclAny, OclType

16

CIS 771 -- OCL Basics 31

Basic Types and Values

n Boolean
n true, false

n Integer
n 1, -5, 2, 34, 26524

n Real
n 1.5, 3.14

n String
n ‘To be or not to be…’ Single

quote

CIS 771 -- OCL Basics 32

Basic Types with Operations

n Boolean
n and, or, xor, not, implies, if-
then-else

n Integer
n *,+,-,/,abs

n Real
n *,+,-,/,floor

n String
n toUpper, concat

17

CIS 771 -- OCL Basics 33

Predefined Object Operations

n o.oclIsKindOf(t : OclType) : Boolean

n true if o’s type is t or a subtype of t

n o.oclIsTypeOf(t : OclType) : Boolean

n true if o’s type is identical to t

n o.oclAsType(t : OclType) : OclType
n analogous to an explicit type cast in Java
n o’s static type becomes OclType
n the expression evaluates to the denoted by object o

if o.oclIsKindOf(t : OclType) is true,
n the expression is undefined otherwise.

(see OMG-UML v1.3 Section 7.8.1.2 pp. 7.29-7.30)

CIS 771 -- OCL Basics 34

Academia Invariant Revisited
Example

context i : Instructor
inv InstructorIsFacultyOrGrad:

i.instructor.oclIsKindOf(Faculty)
or i.instructor.oclIsKindOf(Grad)

Examples

context s : Student
inv: s.IsKindOf(Person) -- is true
inv: s.IsTypeOf(Person) -- is false
inv: s.IsKindOf(Course) -- is false
inv: s.IsKindOf(Grad) -- is false

18

CIS 771 -- OCL Basics 35

Collection Types

n Collection
n An abstract type with the concrete types Set,

Bag, and Sequence as subtypes
n Set

n Analogous to the mathematical set (do
duplicate elements)

n Bag
n Like a set, but may contain duplicates

n Sequence
n Like a bag, but the elements are ordered

CIS 771 -- OCL Basics 36

Navigation Typing Rules
Consider a navigation expression of the form

object.rolename

n The value of the expression is the set of objects on the other side
of the association, e.g.,
n hatcliff.coursesTaught = {cis842, cis771}

n If the association end rolename has a maximum multiplicity of 1,
then the navigation expression returns an object, e.g.,
n cis771.taughtBy = hatcliff

n However, in the case above, we are also allowed to treat the result
as a set,
n cis771.taughtBy->notEmpty

n If the association on the Class Diagram is adorned with ‘{ordered}’,
the navigation results in a sequence

19

CIS 771 -- OCL Basics 37

Collection Properties

n A property of a collection is accessed
using an arrow -> followed by the name
of the property

n Examples
n collection->notEmpty
n collection->isEmpty
n collection->size

n There are many more…
(see OMG-UML v1.3 Section 7.8.2.1 pp. 7.37-7.40)

CIS 771 -- OCL Basics 38

Set Properties

n set->union(set2: Set(T)) : Set(T)

n set->intersection(set2: Set(T)) : Set(T)

n set – (set2: Set(T)) : Set(T)

n There are many more…
(see OMG-UML v1.3 Section 7.8.2.2 pp. 7.40-7.42)

20

CIS 771 -- OCL Basics 39

Example

n What should the context be?
n Actor?

n grad student as an instructor
n Sets needed?

n courses taught (must be accessed by an instructor object)
n courses being taking (must be accessed by a student)

n Navigation issues?
n note we can get from Instructor to an appropriate grad by

considering objects of the ‘instructor’ attribute that are actually
grads

n moving in the reverse direction from Grad to Instructor would be
more difficult

n We’ll use the Instructor context

Consider the Academia constraint…
No grad student teaches a course in which he/she is enrolled.

CIS 771 -- OCL Basics 40

Example
Consider the Academia constraint…
No grad student teaches a course in which he/she is enrolled.

context i:Instructor
inv NoTeachingWhileEnrolled:

…i.instructor.oclIsKindOf(Grad)…

…i.coursesTaught…

…i.instructor.oclAsType(Grad).taking…

Only consider
instructors who
are grad students

Navigate to the
set of courses
taught by the
instructor

Navigate to the set of
courses in which the
instructor (as a grad)
is enrolled

Downcast from
Person to Grad

21

CIS 771 -- OCL Basics 41

Example
Consider the Academia constraint…
No grad student teaches a course in which he/she is enrolled.

context i:Instructor
inv NoTeachingWhileEnrolled:

i.instructor.oclIsKindOf(Grad)
implies

i.coursesTaught
->intersection(i.instructor.oclAsType(Grad).taking)
->isEmpty

Only consider
instructors who
are grad students.

Intersection of coursesTaught and courses
being taken must be empty.

CIS 771 -- OCL Basics 42

For You To Do…

n Pause the lecture
n Download the academia-3.use file
n Add to this file the invariant declarations for the three

Academia constraints given earlier
n All instructors are either faculty or graduate students.
n No one is waiting for a course unless someone is enrolled.

n This is the one we haven’t done yet – but it is easy!

n No graduate student teaches a course that they are enrolled in.

n Load the resulting model into USE
n Create some system snapshots

n some that satisfy your invariants
n some that violate your invariants

22

CIS 771 -- OCL Basics 43

For You To Do (continued)…

n Read the OMG-OCL specification linked on the course
web page

n Continuing from the additions you made to academia-
3.use, see how much of the rest of the Academia model
that you can encode (the description of extensions (in
two more stages) appears on the following slides)
n Coding the remaining class definitions and associations is easy

n Coding some of the remaining constraints will require you to
study the OCL specification (which you need to do before the
next lecture!)

n As usual, create some system snapshots…
n some that satisfy your model
n some that violate your model

CIS 771 -- OCL Basics 44

I. Academia State

n Add an unique ID attribute for students
n since we have integers and strings in OCL,

there is more than one way to model IDs
n Add student transcripts

n a transcript gives a set of courses associated
with a student (the courses that a student
has completed)

n Add prerequisite structure for courses
n relates a course to courses that are

prerequisites for it

23

CIS 771 -- OCL Basics 45

I. Academia Constraints
n Enforce the uniqueness constraint for IDs
n A student can only take a course for

which they have already taken the
prereqs

n A course does not have itself as a
prerequisite
n An even stronger requirement is that there

are no cycles in the prerequisite structure
n Realism: that there exists a course with

prerequisites that someone is enrolled in

CIS 771 -- OCL Basics 46

II. Academia State

n Add Departments
n Instructors per
n Courses per
n Required courses
n Student majors

n Add Faculty-Grad student relationships
n Advisor
n Thesis committee

24

CIS 771 -- OCL Basics 47

II. Department Associations

n Each instructor is in a single department.
n Each department has at least one instructor.

n Each department has some courses
n Courses are in a single department

n Each student has a single department as
his/her major
n i.e., a department

CIS 771 -- OCL Basics 48

II. Faculty-Student Associations

n A graduate student has exactly one
faculty member as an advisor.

n A faculty member serves on five or fewer
graduate student committees.

25

CIS 771 -- OCL Basics 49

II. Academia Constraints
n Advisors are on their student’s committees
n Students are advised by faculty in their major
n Only faculty teach required courses
n Required courses are a subset of the courses for

a major
n Students must take at least one course from

their major each semester
n Realism: There are at least two departments

and some required courses.

CIS 771 -- OCL Basics 50

Acknowledgements
n Material for this lecture is based on the following sources

n Mark Richters and Martin Gogolla. OCL - Syntax, Semantics and Tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL,
pages 43-69. Springer, Berlin, LNCS 2263, 2001.

n Chapter 7 (the OCL chapter) of the OMG-UML specification (version 1.3 – March
2000)

n The Unified Modeling Language Reference Manual. Rumbaugh, Jacobson,
Booch. Addison-Wesley, 1999

