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Abstract. The Object Constraint Language OCL allows to formally
specify constraints on a UML model. We present a formal syntax and
semantics for OCL based on set theory including expressions, invariants
and pre- and postconditions. A formal foundation for OCL makes the
meaning of constraints precise and helps to eliminate ambiguities and
inconsistencies. A precise language definition is also a prerequisite for
implementing CASE tools providing enhanced support for UML models
and OCL constraints. We give a survey of some OCL tools and discuss
one of the tools in some more detail. The design and implementation
of the USE tool supporting the validation of UML models and OCL
constraints is based on the formal approach presented in this paper.

1 Introduction

The Unified Modeling Language (UML) [4, 19, 26] is a widely accepted standard
for object-oriented modeling. The UML notation is largely based on diagrams.
However, for certain aspects of a design, diagrams often do not provide the
level of conciseness and expressiveness that a textual language can offer. Thus,
textual annotations are frequently used to add details to a design. A special class
of annotations are constraints that impose additional restrictions on a model.
For this purpose, the Object Constraint Language (OCL) [18,28] provides a
framework for specifying constraints on a model in a formal way. OCL is a
textual constraint language with a notational style similar to common object-
oriented languages. OCL expressions are declarative and side effect-free. The
language allows the modeler to specify constraints on a conceptual level helping
to abstract from lower level implementation details.

Although designed to be a formal language, experience with OCL has shown
that the language definition is not precise enough. Various authors have pointed
out language issues related to ambiguities, inconsistencies or open interpreta-
tions [7,11,12]. In this paper, we present a formal foundation for OCL defining
the abstract syntax and the semantics of OCL expressions, invariants, and pre-
and postconditions. A formalization of OCL improves the language and helps
to gain a more precise understanding of UML models and their interpretation.
In our view, a precise language definition is also a prerequisite for implementing
CASE tools providing enhanced support for UML models and OCL constraints.



We give a brief survey of OCL tools and discuss one of the tools in some more
detail.

There are various different approaches in related work addressing formal
aspects of OCL. A semantics for OCL without pre- and postconditions was first
given in [22]. A graph-based semantics for OCL was developed by translating
OCL constraints into expressions over graph rules [5]. A formal semantics was
also provided by a mapping from OCL to a temporal logic [9]. An OCL extension
to support temporal operators is proposed in [20]. The expressive power of OCL
in terms of navigability and computability is discussed in [16]. Metamodels for
OCL [1,23] follow the metamodeling approach used in the UML standard. An
approach for generating OCL constraints based on design patterns is described
in [2]. Recently, a need for OCL features allowing behavioral constraints on
occurrences of events, signals, and operation calls has been emphasized [15, 27].

The paper is structured as follows. Section 2 introduces a short example illus-
trating the application of OCL for specifying constraints. Section 3 defines UML
object models and states providing the context for OCL. In Section 4, we briefly
summarize the abstract syntax and semantics of OCL expressions which was
first introduced in [22]. In addition to [22], we formally define the OCL notion
of a context. Section 5 defines the syntax and semantics of pre- and postcondi-
tions. We explain the various additional syntactic possibilities and keywords like
result,isCcl New, and @r e that may appear in postconditions. OCL tool
support is discussed in Section 6. Section 7 presents some conclusions.

2 Specifying OCL Constraints

OCL is a textual language that allows to specify additional constraints on a UML
model. A model always provides the context for constraints. Figure 1 shows a
class diagram modeling employees, departments, and projects. Attributes like
name, age, and salary represent properties that are common among all objects of
a class. The operation raiseSalary can be invoked on employee objects. This is the
only operation in our model to keep the example small. The operation signature
defines a parameter and a return value of type Real. Relationships between the
classes are modeled as associations WorksIn, WorksOn, and Controls.

Employee Department
name : String Worksln» name : String
age : Integer * 1.~ |location : String
salary : Real budget : Integer
raiseSalary(amount : Real) : Real

* Project 1

name : String
budget : Integer| * «Controls

*

WorksOn»

Fig. 1. UML class diagram of example model



OCL can be used to specify constraints concerning the static structure and
the behavior of a system. Invariants are static structure constraints. An invariant
is a condition that “must be true for all instances of that type at any time” [18,
p. 7-6]. For example, the following invariant requires all department objects to
have a non-negative budget.

cont ext Departnent inv:
sel f. budget >= 0

More complex constraints can be built by navigating along the associations
between classes, for example:

-- Enpl oyees working on nore projects than other enpl oyees
-- of the sanme departnent get a higher salary.
context Departnent inv:
sel f. enpl oyee->forAll (el, e2 |
el. project->size > e2.project->size
inmplies el.salary > e2.sal ary)

The f or Al | expression asserts a condition for each pair of employee objects
working at the same department. The expression el. proj ect yields the set
of projects the employee el is working on. The OCL standard operation Si ze
determines the cardinality of that set. Role names like pr oj ect and enpl oyee
at the ends of associations are omitted in Figure 1. If no role name is given, the
default in UML is to use the class name starting with a lowercase letter.

The behavioral interface of objects is defined by operations. Constraints on
the behavior are specified in OCL by means of pre- and postconditions. Such
a constraint defines a contract that an implementation of the operation has to
fulfill [17]. It also provides the possibility for verifying the correctness of an
implementation, e.g., in the style of Hoare logic [13].

-- If the anpbunt is positive, raise
-- the salary by the given anmount
context Enpl oyee::raiseSalary(ambunt : Real) : Rea
pre: amount > 0
post: self.salary = self.salary@re + anount
and result = self.salary

Pre- and postconditions will be discussed in detail in Section 5. In the next
two sections, we will first discuss object models and simple OCL expressions that
may appear in invariants. The definition for simple expressions is later extended
to incorporate additional features that may appear only in postconditions.

3 Object Models and States

OCL expressions refer to various elements of a UML model. We therefore define
an object model M to contain basically those elements of UML that are relevant
for use with OCL. An object model

M = (Crass, ATT., OP., ASSOC, associates, roles, multiplicities, <)



contains elements found in class diagrams. We only give an informal description
of the components of an object model here. Examples in parentheses refer to the
model shown in Figure 1. More details can be found in [22].

— CLASS is a set of class names (CLASS = { Employee, Department, Project}).

— ATT, is a set of operation signatures for functions mapping an object of
class ¢ to an associated attribute value
(ATTEmployee = {name : Employee — String,...}).

— OP, is a set of signatures for user-defined operations of a class ¢ without
side effects (these are tagged isQuery in a UML model, our example does
not have any).

— Assoc is a set of association names
(Assoc = {WorksIn, WorksOn, Controls}).

e associates is a function mapping each association name to a list of
participating classes (associates : WorksIn — ( Employee, Department)).

e roles is a function assigning each end of an association a role name
(roles : WorksIn > (employee, department)).

e multiplicities is a function assigning each end of an association a
multiplicity specification (multiplicities : WorksIn — (N, N)).

— < is a partial order on CLASS reflecting the generalization hierarchy of
classes (there is no generalization used in our example, therefore <= 0)).

The interpretation of an object model is the set of possible system states.
A system state includes objects, links and attribute values. A system may be
in different states as it changes over time. Therefore, a system state is also
called a snapshot of a running system. With respect to OCL, we can, in many
cases, concentrate on a single system state given at a discrete point in time. For
example, a system state provides the complete context for the evaluation of class
invariants. For pre- and postconditions, however, it is necessary to consider two
consecutive states (see Section 5).

A single system state for an object model M is a structure o(M) =
(0Crass, OATT; OAssoc) Where the finite sets ocpass(c) contain all objects of a class
c € CLASS currently existing in the system state, functions oarr assign attribute
values to each object, and the finite sets oassoc(as) contain links connecting
objects for each association as € ASSOC.

4 OCL Expressions

The definition of OCL expressions is based upon a signature Xy = (T, <, 20m)
for an object model M providing a set of types Thq, a relation < on types
reflecting the type hierarchy, and a set of operations {254. The signature contains
the initial set of syntactic elements upon which we build the expression syntax.



For example, the signature for the model in Fig. 1 is

Y m = ({Employee, Department, Project, Integer, Real, Set( Project), ... },
{Integer < Real, ...},
{+ : Integer x Integer — Integer,
name : Employee — String,
project : Employee — Set(Project),...}) .

The set of types Taq includes type expressions for constructing the OCL
collection types Collection(t), Set(t), Sequence(t), and Bag(t) which are param-
eterized by an element type t. Note that (2, only includes signatures of side
effect-free operations such as standard arithmetic, attribute access and naviga-
tion by role names. These operations are intended to be available as part of
side effect-free OCL expressions, for example, in invariants. The operation raise-
Salary in class Employee is expected to cause side effects to the system state
and is therefore not included in the signature.

A semantics for a data signature X, is a mapping associating each type
t € Ty with a domain I(t) and each operation w : t1 X <+ X t,, = t € pg
with a function I(w)(o) : I(t1) X -+ X I(t,) — I(t). The parameter o denotes a
system state with a set of objects, their attribute values and association links.
It is required for evaluating attribute access and navigation operations.

4.1 Syntax of Expressions

We define the syntax of expressions inductively so that more complex expressions
are recursively built from simple structures. For each expression the set of free
occurrences of variables is also defined. The latter is necessary for determining
the scope of a variable and the possible context of an expression as discussed in
Section 4.3.

Definition 1 (Syntax of expressions)

Let Xpq = (Tm, <, 20) be a data signature over an object model M. Let
Var = {Var, }ter,, be a family of variable sets where each variable set is
indexed by a type t. The syntax of expressions over the signature Xy, is given
by a set Expr = {Expr, }+eT1,, and a function free : Expr — F(Var) defined as
follows.

i. If v € Var; then v € Expr,; and free(v) := {v}.
ii. If v € Vary,,e; € Expr, ,es € Expr, then let v = e1 in ez € Expr;, and
free(let v = ey in ey) := free(es) — {v}.
ili. fw:ty x---xXt, =t€ N and e; € Expry, for all i =1,...,n then
w(e1,...,en) € Expr, and free(w(ey, ..., ey)) := free(e;) U - -- Ufree(ey).
iv. If e1 € Exprpgojean and ez, e3 € Expr, then if e; then eg else es endif
€ Expr, and free(if e; then ey else e3 endif) := free(e;) U free(ez) U free(es).



v. If e € Expr; and ¢/ < tort <t then (e asType t') € Expr,,,
(e isTypeOf t') € Expryooiean, (€ 1sSKindOf ') € Exprp,gjeanand
free((e asType t')) := free(e), free((e isTypeOf t')) := free(e),
free((e isKindOf t')) := free(e).
vi. If e1 € EXDProgiection(ty), V1 € Vary,,v2 € Varg,, and es, e3 € Expr,, then
e; — iterate(vi;v2 = ez | e3) € Expr,, and
free(e; —iterate(vy; vy = eq | e3)) := (free(ey ) Ufree(es) Ufree(es)) — {v1, va}.

An expression of type t' is also an expression of a more general type t. For all
t' < t:if e € Expr, then e € Expr,. O

A variable expression (i) refers to the value of a variable. Variables (including
the special variable sel f ) may be introduced by the context of an expression,
as part of an iterate expression, and by a let expression. Let expressions (ii) do
not add to the expressiveness of OCL but help to avoid repetitions of common
sub-expressions. Operation expressions (iii) apply an operation from (2. The
set of operations includes:

— predefined data operations: +, -, *, <, >, si ze, max
— attribute operations: sel f . age, e. sal ary

— side effect-free operations defined by a class

— navigation by role names: e. enpl oyee

— constants: 25, " aStri ng’

As demonstrated by the examples, an operation expression may also be writ-
ten in OCL path syntax as ej.w(esa, . .., e,). This notational style is common in
many object-oriented languages. It emphasizes the role of the first argument as
the “receiver” of a “message”. If e; denotes a collection value, an arrow symbol
is used in OCL instead of the period: e; — w(ea,...,e,). Collections may be
bags, sets, or lists. An if-expression (iv) provides an alternative selection of two
expressions depending on the result of a condition given by a boolean expression.

An asType expression (v) can be used in cases where static type information
is insufficient. It corresponds to the ocl AsType operation in OCL and can
be understood as a cast of a source expression to an equivalent expression of a
(usually) more specific target type. The target type must be related to the source
type, that is, one must be a subtype of the other. The isTypeOf and isKindOf
expressions correspond to the ocl | sTypeOf and ocl | sKi ndOf operations,
respectively. An expression (e isTypeOf t') can be used to test whether the type
of the value resulting from the expression e has the type ¢ given as argument.
An isKindOf expression (e isKindOf #') is not as strict in that it is sufficient for
the expression to become true if #' is a supertype of the type of the value of e.
Note that OCL defines these type casts and tests as operations with parameters
of type OclType. In contrast to OCL, we technically define them as first class
expressions which has the benefit that we do not need the metatype OclType.
Thus the type system is kept simple while preserving compatibility with standard
OCL syntax. A related discussion about the removal of OCL metatypes can be
found in the paper by Rumpe in this proceedings.



An iterate expression (vi) is a general loop construct which evaluates an
argument expression e repeatedly for all elements of a collection which is given
by a source expression e;. Each element of the collection is bound in turn to
the variable v; for each evaluation of the argument expression. The argument
expression ez may contain the variable v, to refer to the current element of the
collection. The result variable v is initialized with the expression es. After each
evaluation of the argument expression es, the result is bound to the variable vs.
The final value of vs is the result of the whole expression. The iterate construct
is probably the most important kind of expression in OCL. We will shortly see
how other OCL constructs can be equivalently defined in terms of an iterate
expression.

4.2 Semantics of Expressions

The semantics of expressions is made precise in the following definition. A context
for evaluation is given by an environment 7 = (o, §) consisting of a system state o
and a variable assignment 8 : Var; — I(t). A system state o provides access to
the set of currently existing objects, their attribute values, and association links
between objects. A variable assignment 5 maps variable names to values.

Definition 2 (Semantics of expressions)
Let Env be the set of environments 7 = (o, #). The semantics of an expression
e € Expr, is a function I[e] : Env — I(t) that is defined as follows.

i. ITv](r) = B(v).
ii. I[let v=-ey in ex||(7) = I[e2](o, B{v/I[e1 ](T)})-
. Ifw(er,...,en) (1) = I(w)(r)I[e1 J(7),..., I[en](T)).
ITex](r) if ITe1](1) = true,
iv. I[if e1 then e, else es endif[(7) = < I[es](7) if I[e;](r) = false,

1 otherwise.

IH (6 iSTypeOf t/) ]](7_) _ {true if IH@]](T) c I(t’) _ Ut”<t’ I(t”),

false otherwise.
. true if ITe](r) € I(t'),
I (e isKindOf #)](r) = false OthEI‘\ﬂi(SG) "

vi. I[e; —iterate(vi;va = ea | €3) ](7) = I[ e1 —iterate’ (v | e3) ](7') where
7 =(0,8") and 7" = (0,8") are environments with modified variable
assignments

B = p{va/I[ea](7)}
B" = B'{va /1 e3](a, 8'{v1/21})}



and iterate’ is defined as:!
(a) If e1 € Exprocguence(t,) then Ifer — iterate’ (vy | e3) J(7') =

(ITv21(")
if ITex J(r') = (),
I[mkSequence, (z3,...,2z,) — iterate’(vy | e3) ](7")

| if I[er J(7") = (@1, ..., 2p).
(b) If e1 € Exprgey,) then I[er — iterate’(vy | e3) (') =
(o107

if Ife  J(7") = 0,
I[mkSety, (za, ..., z,) — iterate’ (vy | e3) J(7")
| i I[erJ(7') = {1, ..., 20}
(c) If e; € Exprp,,,) then I[e; — iterate’(vy | e3) [(7') =
(1Tv2](")

if ey J(7') = 0,
I[mkBag; (z3,...,2,) — iterate’(vy | e3) ](7")

| if I[edJ(7") = {1, ...,z }

O

The semantics of a variable expression (i) is the value assigned to the vari-
able. A let expression (ii) results in the value of the sub-expression es. Free
occurrences of the variable v in e are bound to the value of the expression e;.
An operation expression (iii) is interpreted by the function associated with the
operation. Each argument expression is evaluated separately. The result of an
if-expression (iv) is given by the then-part if the condition is true. If the con-
dition is false, the else-part is the result of the expression. The result of a cast
expression (v) using asType is the value of the expression, if the value lies within
the domain of the specified target type, otherwise it is undefined. A type test
expression with isTypeOf is true if the expression value lies exactly within the
domain of the specified target type without considering subtypes. An isKindOf
type test expression is true if the expression value lies within the domain of
the specified target type or one of its subtypes. An iterate expression (vi) loops
over the elements of a collection and allows the application of a function to each
collection element. The function results are successively combined into a value
that serves as the result of the whole iterate expression. This kind of evaluation
is also known in functional style programming languages as fold operation.

One must be careful when using iterate expression on sets and bags. For sets
and bags as source collection there may be expressions where the result of the
whole iterate expression depends on the order in which collection elements are
selected for application. The following expression concatenates the names of all
employees working on a project. However, the names in the resulting string may

! The constructor operations mkSequence,, mkBag,, and mkSet; are in {2, and pro-
vide the abstract syntax for collection literals like Set {1, 2} in concrete OCL syntax.



appear in any order, because it is unspecified in which order the elements in the
set p. enpl oyee are applied.

p. enpl oyee->iterate(e : Enpl oyee;
nanes : String = '’ | nanes.concat (e.nane))

A number of important OCL constructs such as exi sts,forAl | , sel ect,
reject,collect,andisUni que are defined in terms of iterate expressions.
In [18] the intended semantics of these expressions is given by postconditions with
iterate-based expressions. The following schema shows how these expressions
can be translated to equivalent iterate expressions. A similar translation is given
in [6].

I[e; —exists(vy | e3) (1) =
I[ e; —iterate(vl;v2 = false | vo or e3) ](7)

I[e; —forAll(vy | e3)](1) =
I e; —iterate(vl;v2 = true | vy and e3) (1)

I[ ey — select(vy | e3)](r) =
I[e; —iterate(vl;v2 = ey |

if e3 then vy else vy — excluding(v,) endif) |(7)

If ey —reject(vy | e3)](1) =
I ey —iterate(vl;v2 = e |

if e3 then vy — excluding(v;) else vy endif) (1)

I[ e; — collect(vy | e3) ](7) =
I[ ey —iterate(vl;v2 = mkBag,, e of.c; |

v = including(vy)) J(7)

I[ ey —isUnique(vy | e3) ](r) =
I e; —iterate(vl; v2 = true |
vy and e; — count(vy) = 1) ](7)

4.3 Expression Context

An OCL expression is always written in some syntactical context. Since the
primary purpose of OCL is the specification of constraints on a UML model, it
is obvious that the model itself provides the most general kind of context. In our
approach, the signature Xy contains types (e.g., object types) and operations
(e.g., attribute operations) that are imported from a model, thus providing a
context for building expressions that depend on the elements of a specific model.

On a much smaller scale, there is also a notion of context in OCL that simply
introduces variable declarations. This notion is closely related to the syntax for
constraints written in OCL. A context clause declares variables in invariants,



and parameters in pre- and postconditions. The following example declares a
variable @ which is subsequently used in an invariant expression.

context e : Enployee inv:
e.age > 18

The next example declares a parameter anmount which is used in a pre- and
postcondition specification.

context Enpl oyee::raiseSal ary(amunt : Real) : Real
pre: amount > 0
post: self.salary = self.salary@re + anount
and result = self.salary

Here we use the second meaning of context, that is, a context provides a set of
variable declarations. The more general meaning of context is already subsumed
by our concept of a signature as described above. A similar distinction between
local and global declarations is also made in [8]. In their paper, the authors extend
the OCL context syntax to include global declarations and outline a general
approach to derive declarations from information on the UML metamodel level.

A contezt for an invariant (corresponding to the nonterminal cl assi fi er -
Cont ext in the OCL grammar [18]) is a declaration of variables. The variable
declaration may be implicit or explicit. In the implicit form, the context is writ-
ten as

context C inv:
<expressi on>

In this case, the <expr essi on> may use the variable sel f of type C as a
free variable. In the explicit form, the context is written as

context v :Ci,...,vy:Cy inV:
<expr essi on>

The <expr essi on> may use the variables vy, ..., v, of types Ci,...,C, as
free variables. The OCL grammar actually only allows the explicit declaration of
at most one variable in a classifierContext. This restriction seems unnecessarily
strict. Having multiple variables is especially useful for constraints specifying
key properties of attributes. The example (taken from [18, p. 7-18])

context Person inv:
Person. al | I nstances->forAl |l (pl, p2 |
pl <> p2 inplies pl.name <> p2.nane)

could then be just written as:

context pl, p2 : Person inv:
pl <> p2 inplies pl.nane <> p2.nane

A context for a pre-/postcondition (corresponding to the nonterminal op-
erationCont ext in the OCL grammar) is a declaration of variables. In this
case, the context is written as



context C:op(pr:Th,...,pn:Tn): T
pre: P
post: @

This means that the variable sel f (of type C) and the parameters py,...,p,
may be used as free variables in the precondition P and the postcondition Q).
Additionally, the postcondition may use r esul t (of type T') as a free variable.
The details are explained in Section 5.

An invariant is an expression with boolean result type and a set of (explicitly
or implicitly declared) free variables v, : Ci,...,v, : C, where C1,...,C, are
classifier types. An invariant

context v :Ci,...,vy:Cy inV:
<expressi on>

is equivalent to the following expression without free variables that must be
valid in all system states.

Ci.allInstances->forAll (v : C1 |

Cyp.all I nstances->forAll (v, : Cp |
<expr essi on>

)

5 Pre- and Postconditions

The definition of expressions in Section 4 is sufficient for invariants and queries
where we have to consider only single system states. For pre- and postcondi-
tions, there are additional language constructs in OCL which enable references
to the system state before the execution of an operation and to the system state
that results from the operation execution. The general syntax of an operation
specification with pre- and postconditions is defined as

context C:op(pi:Th,...,pn:Th)
pre: P
post: @

First, the context is determined by giving the signature of the operation for
which pre- and postconditions are to be specified. The operation op which is
defined as part of the classifier C' has a set of typed parameters PARAMS,, =
{p1,...,pn}. The UML model providing the definition of an operation signature
also specifies the direction kind of each parameter. We use a function kind :
PARAMS,p, — {in,out,inout,return} to map each parameter to one of these
kinds. Although UML makes no restriction on the number of return parameters,
there is usually only at most one return parameter considered in OCL which is
referred to by the keyword r esul t in a postcondition. In this case, the signature



is also written as C :: op(p1 : T4, - .-, Pn—1 : Tn—1) : T with T being the type of
the r esul t parameter.

The precondition of the operation is given by an expression P, and the post-
condition is specified by an expression (). P and ) must have a boolean result
type. If the precondition holds, the contract of the operation guarantees that the
postcondition is satisfied after completion of op. Pre- and postconditions form
a pair. A condition defaults to true if it is not explicitly specified.

Note that in the previous section, we have talked about side effect-free oper-
ations. Now we are discussing operations that usually have side effects. Table 1
summarizes different kinds of operations in UML. Operations in the table are
classified by the existence of a return parameter in the signature, whether they
are declared as being side effect-free (with the tag isQuery in UML), the state
before and after execution, and the languages in which (1) the operation body
can be expressed (Body), and (2) the operation may be called (Caller).

Table 1. Different kinds of operations in UML

Return value side effect-free States Body Caller
no no pre-state # post-state allowed AL AL
yes no pre-state # post-state allowed AL AL
yes yes pre-state = post-state required OCL OCL, AL

The first row of the table describes operations without a return value. These
are used to specify side effects on a system state. Therefore, the post-state usually
differs from the state before the operation call. Since specifying side effects is out
of the scope of OCL expressions, the body of the operation must be expressed
in some kind of Action Language (AL). Furthermore, the operation cannot be
used without restriction as part of an OCL expression because all operations
in an OCL expression must be tagged isQuery. The same arguments apply to
operations with a return value that are listed in the second row. The third kind of
operations are those operations which may be used in OCL without restrictions.
Because their execution does not have side effects, the pre- and post-states are
always equal. Often, the body of the operation can be specified with an OCL
expression. It might be desirable for an action language to make use of these
kinds of operations by including OCL as a sub-language.

5.1 Motivating Example

Before we give a formal definition of operation specifications with pre- and post-
conditions, we demonstrate the fundamental concepts by means of an example.
Figure 2 shows a class diagram with two classes A and B that are related to each
other by an association R. Class A has an operation op() but no attributes.
Class B has an attribute ¢ and no operations. The implicit role names a and b



at the association ends allow navigation in OCL expressions from a B object to
the associated A object and vice versa.

A B
c : Integer

op()

Fig. 2. Example class diagram

Figure 3 shows an example for two consecutive states of a system correspond-
ing to the given class model. The object diagrams show instances of classes A
and B and links of the association R. The left object diagram shows the state
before the execution of an operation, whereas the right diagram shows the state
after the operation has been executed. The effect of the operation can be de-
scribed by the following changes in the post-state: (1) the value of the attribute ¢
in object b; has been incremented by one, (2) a new object b, has been created,
(3) the link between a and b; has been removed, and (4) a new link between a
and b, has been established.

b b2:B
c=0
R
a:A la R bl bl:B a A P bl:B
=7 c= 1 = c= 2
(a) Pre-state with ob- (b) Post-state. The ob-
jects a and b, . ject b, did not exist in

the pre-state.

Fig. 3. Object diagrams showing a pre- and a post-state

For the following discussion, consider the OCL expression a. b. ¢ where a is a
variable denoting the object a. The expression navigates to the associated object
of class B and results in the value of the attribute c¢. Therefore, the expression
evaluates to 1 in the pre-state shown in Figure 3(a).

As an example of how the OCL modifier @r € may be used in a postcondition
to refer to properties of the previous state, we now look at some variations of the
expression a. b. ¢ that may appear as part of a postcondition. For each case,
the result is given and explained.

—a.b.c =0
Because the expression is completely evaluated in the post-state, the navi-



gation from a leads to the b, object. The value of the attribute ¢ of b, is 0
in Figure 3(b).

—a.b@re.c = 2
This expression refers to both the pre- and the post-state. The previous value
of a. b is a reference to object b,. However, since the @r e modifier only
applies to the expression a. b, the following reference to the attribute ¢ is
evaluated in the post-state of b;, even though b, is not connected anymore
to a. Therefore, the result is 2.

—a.b@re.cwre = 1
In this case, the value of the attribute ¢ of object b, is taken from the pre-
state. This expression is semantically equivalent to the expression a. b. ¢ in
a precondition.

—a.b.care = 1L
The expression a. b evaluated in the post-state yields a reference to object b,
which is now connected to a. Since b, has just been created by the operation,
there is no previous state of b,. Hence, a reference to the previous value of
attribute ¢ is undefined.

Note that the @r e modifier may only be applied to operations not to arbi-
trary expressions. An expression such as (a. b) @r e is syntactically illegal.

OCL provides the standard operation ocl | sNew for checking whether an
object has been created during the execution of an operation. This operation
may only be used in postconditions. For our example, the following conditions
indicate that the object b, has just been created in the post-state and b, already
existed in the pre-state.

— a.b.oclIsNew = true
— a.b@re.ocllsNew = fal se

5.2 Syntax and Semantics of Postconditions

All common OCL expressions can be used in a precondition P. Syntax and se-
mantics of preconditions are defined exactly like those for plain OCL expressions
in Section 4. Also, all common OCL expressions can be used in a postcondi-
tion Q. Additionally, the @r e construct, the special variable r esul t ; and the
operation ocl | sNew may appear in a postcondition. In the following, we ex-
tend Definition 1 for the syntax of OCL expressions to provide these additional
features.

Definition 3 (Syntax of expressions in postconditions)

Let op be an operation with a set of parameters PARAMS,,. The set of param-
eters includes at most one parameter of kind “return”. The basic set of expres-
sions in postconditions is defined by repeating Definition 1 while substituting all
occurrences of Expr, with Post-Expr,. Furthermore, we define that

— Each non-return parameter p € PARAMS,,, with a declared type ¢ is available
as variable: p € Vary.



— If PARAMS,,, contains a parameter of kind “return” and type ¢ then r esul t
is a variable: r esul t € Var;.

— The operation ocl | sNew : ¢ — Boolean is in 2, for all object types
c € Ty.

The syntax of expressions in postconditions is extended by the following rule.

vii. Fw:t) x- - xt, >t€ N and e; € Post-Expr,, for all i =1,...,n then
wWapre(€1; - - -, €n) € Post-Expr,.

O

All general OCL expressions may be used in a postcondition. Moreover, the
basic rules for recursively constructing expressions do also apply. Operation pa-
rameters are added to the set of variables. For operations with a return type, the
variable r esul t refers to the operation result. The set of operations is extended
by ocl | sNew which is defined for all object types. Operations wapre are added
for allowing references to the previous state (vii). The rule says that the @r e
modifier may be applied to all operations, although, in general, not all operations
do actually depend on a system state (for example, operations on data types).
The result of these operations will be the same in all states. Operations which do
depend on a system state are, e.g., attribute access and navigation operations.

For a definition of the semantics of postconditions, we will refer to environ-
ments describing the previous state and the state resulting from executing the
operation. An environment 7 = (o, 3) is a pair consisting of a system state o
and a variable assignment 3 (see Section 4.2). The necessity of including vari-
able assignments into environments will be discussed shortly. We call an envi-
ronment Tpre = (Opre; Spre) describing a system state and variable assignments
before the execution of an operation a pre-environment. Likewise, an environ-
ment Tphost = (Tpost, Opost) after the completion of an operation is called a post-
environment.

Definition 4 (Semantics of postcondition expressions)

Let Env be the set of environments. The semantics of an expression e €
Post-Expr, is a function IJe] : Env x Env — I(¢). The semantics of the ba-
sic set, of expressions in postconditions is defined by repeating Definition 2 while
substituting all occurrences of Expr, with Post-Expr,. References to I[ e () are
replaced by ITe](Tpre, Tpost) to include the pre-environment. Occurrences of 7
are changed to T,0st Which is the default environment in a postcondition.

— For all p € PARAMS,p, : I[P ](Tpre; Tpost) = Bpost (P)-
e Input parameters may not be modified by an operation:
kind(p) = in implies Bpre(p) = Bpost (P)-
e Output parameters are undefined on entry:
kind(p) = out implies fpre(p) = L.
— I[resul t J(Tpre; Tpost) = Ppost (r €sul t).
_ ) true if ¢ € opre(c),

~ 1[0l 1 sNew](pre, Tpost) (€) = false otherwise



vil. I[wapre(€1,---,en) |(Tpre; Tpost) =
I(w)(7pre) (I €1 [(Tpre; Tpost)s - - - » L[ €n [ (Tpre; Tpost))

O

Standard expressions are evaluated as defined in Definition 2 with the post-
environment determining the context of evaluation. Input parameters do not
change during the execution of the operation. Therefore, their values are equal
in the pre- and post-environment. The value of the result variable is de-
termined by the variable assignment of the post-environment. The ocl | sNew
operation yields true if an object did not exist in the previous system state.
Operations referring to the previous state are evaluated in context of the pre-
environment (vii). Note that the operation arguments may still be evaluated in
the post-environment. Therefore, in a nested expression, the environment only
applies to the current operation, whereas deeper nested operations may evaluate
in a different environment.

With these preparations, the semantics of an operation specification with pre-
and postconditions can be precisely defined as follows. We say that a precondi-
tion P satisfies a pre-environment Ty — written as mpre = P — if the expression P
evaluates to true according to Definition 2. Similarly, a postcondition () satis-
fies a pair of pre- and post-environments, if the expression ) evaluates to true
according to Definition 4:

Tpre |: P iff IIIP]](Tpre) = true
(Tpre7 TPOSt) |: Q iff IH Q ]](Tprea Tpost) = true

Definition 5 (Semantics of operation specifications)
The semantics of an operation specification is a set R C Env x Env defined as

I[ context C:op(pr:Ti,...,pn:Th)
pre: P
post: @ ] = R

where R is the set of all pre- and post-environment pairs such that the pre-
environment 7, satisfies the precondition P and the pair of both environments
satisfies the postcondition Q:

R = {(Tpreanost) | Tpre ': P A (Tpreanost) ': Q}
O

The satisfaction relation for () is defined in terms of both environments since
the postcondition may contain references to the previous state. The set R de-
fines all legal transitions between two states corresponding to the effect of an
operation. It therefore provides a framework for a correct implementation.

Definition 6 (Satisfaction of operation specifications)

An operation specification with pre- and postconditions is satisfied by a pro-
gram S in the sense of total correctness if the computation of S is a total function
fs : dom(R) — im(R) and graph(fs) C R. O



In other words, the program S accepts each environment satisfying the pre-
condition as input and produces an environment that satisfies the postcondition.
The definition of R allows us to make some statements about the specification.
In general, a reasonable specification implies a non-empty set R allowing one
or more different implementations of the operation. If R = {, then there is
obviously no implementation possible. We distinguish two cases: (1) no environ-
ment satisfying the precondition exists, or (2) there are environments making
the precondition true, but no environments do satisfy the postcondition. Both
cases indicate that the specification is inconsistent with the model. Either the
constraint or the model providing the context should be changed. A more re-
strictive definition might even prohibit the second case.

5.3 Examples

Consider the operation raiseSalary from the example in Section 2. The operation
raises the salary of an employee by a certain amount and returns the new salary.

context Enpl oyee::raiseSal ary(amunt : Real) : Real
pre: anount > 0
post: result = self.salary
post: self.salary = self.salary@re + anount

The precondition only allows positive values for the amount parameter. The
postcondition is specified as two parts which must both be true after executing
the operation. This could equivalently be rephrased into a single expression com-
bining both parts with a logical and. The first postcondition specifies that the
result of the operation must be equal to the salary in the post-state. The second
postcondition defines the new salary to be equal to the sum of the old salary and
the amount parameter. All system states making the postcondition true, after a
call to raiseSalary has completed, satisfy the operation specification.

The above example gives an exclusive specification of the operation’s effect.
The result is uniquely defined by the postconditions. Compare this with the next
example giving a much looser specification of the result.

context Enpl oyee::raiseSal ary(amunt : Real) : Real
pre: amount > 0
post: result > self.salary@re

The result may be any value greater than the value of the salary in the
previous state. Thus, the postcondition does not even prevent the salary from
being decreased. However, what the example should make clear, is that there may
not only exist many post-states but also many bindings of the result variable
satisfying a postcondition. This is the reason why we have to consider both the
system state and the set of variable bindings for determining the environment
of an expression in a postcondition.

The following example shows the evaluation of the expression a. b@re. c.
An informal explanation was given in Section 5.1. With the previous syntax



and semantics definitions, we are now able to give a precise meaning to this
expression. Numbers in parentheses at the right of the transformations show
which rule of Definition 4 (and Definition 2) has been applied in each step.

I c(bapre(a)) I(Tpre; Tpost)

(€)(Tpost) ([ bapre (@) [(Tpre; Tpost)) (iii)
(€)(Tpost) (L (D) (Tpre) (L[ @] (Tpre; Tpost))) (vii)
() (Tpost ) (1 (b) (Tpre) (B(a))) (i)
() (Tpost ) (1 (b) (Tpre) (@)

() (Tpost ) (by)

C)\Tpost

I
w--~

6 OCL Tools

There are many CASE tools supporting drawing of UML diagrams and features
like code generation and reverse engineering. However, support for OCL and
semantic analysis of models is rarely found in these tools.

There are several tasks related to OCL for which tool support seems bene-
ficial. For example, syntax checking of constraints helps in writing syntactically
correct expressions. The next step could be an interpreter enabling the evalua-
tion of expressions. Given a snapshot of a system, it could check the correctness
of the snapshot with respect to the constraints. An alternative way for checking
constraints is based on code generation. OCL expressions are transformed into
statements of the implementation language. The generated code is responsible
for detecting constraint violations.

A comprehensive list enumerating the most important kinds of tools support-
ing OCL is given in [14]. The authors distinguish between tools doing (1) syn-
tactical analysis, (2) type checking, (3) logical consistency checking, (4) dynamic
invariant validation, (5) dynamic pre-/postcondition validation, (6) test automa-
tion, and (7) code verification and synthesis. The following (incomplete) list gives
an overview of some OCL tools.

— Probably the first available tool for OCL was a parser developed by the
OCL authors at IBM (and now maintained at Klasse Objecten). The parser
is automatically generated from the grammar given in [18].

— An OCL toolset is being developed at the TU Dresden [14]. Part of the
toolset is an OCL compiler [10] that also has been integrated with the open
source CASE tool Argo/UML [25].

— An OCL interpreter is described in [29]. It is partly based on an OCL meta-
model describing the abstract syntax of OCL as a UML model [23].

— A commercial tool named ModelRun [3] provides validation of invariants
against snapshots.

— The USE tool [21,24] allows validation of OCL constraints by checking snap-
shots of a system. The tool also provides support for an analysis of con-
straints.



Table 2 compares the tools with respect to the features they support. The
table only gives a rough indication about what is provided by a specific tool.
However, what can clearly be seen is that logical consistency checking and code
verification are features that currently none of the tools we considered here offers.

Table 2. Some OCL tools and the features they support.

Tool
Feature IBM Dresden TU
Parser OCL Toolkit Munich ModelRun USE

(1) syntactical . o o o .
analysis

(2) type - . . o .
checking

(3) logical consis- - - - - -
tency checking

(4) dynamic invari- - - o o .
ant validation

(5) dynamic pre-/post- - - - - .
condition validation

(6) test - - - - .
automation

(7) code verification - - - - _
and synthesis

6.1 The USE Tool

In this section, we present a tool for validating UML models and OCL constraints
based on the formal syntax and semantics of OCL and UML models given earlier
in this paper. The USE tool [21,24] has an interpreter for OCL expressions
and a facility for animating snapshots of a system. Different snapshots can be
interactively generated and checked against the invariants specified as part of a
model.

The goal of model validation is to achieve a good design before implementa-
tion starts. There are many different approaches to validation: simulation, rapid
prototyping, etc. In this context, we consider validation by generating snapshots
as prototypical instances of a model and comparing them against the specified
model. This approach requires very little effort from developers since models can
be directly used as input for validation. Moreover, snapshots provide immedi-
ate feedback and can be visualized using the standard notation of UML object
diagrams — a notation most developers are familiar with.

The result of validating a model can lead to several consequences with respect
to the design. First, if there are reasonable snapshots that do not fulfill the
constraints, this may indicate that the constraints are too strong or the model is



not adequate in general. Therefore, the design must be revisited, e.g., by relaxing
the constraints to include these cases. On the other hand, constraints may be too
weak, therefore allowing undesirable system states. In this case, the constraints
must be changed to be more restrictive. Still, one has to be careful about the fact
that a situation in which undesirable snapshots are detected during validation
and desired snapshots pass all constraints does not allow a general statement
about the correctness of a specification in a formal sense. It only says that the
model is correct with respect to the analyzed system states. However, some
advantages of validation in contrast to a formal verification are the possibility to
validate non-formal requirements, and that it can easily be applied by average
modelers without training in formal methods.

Validating pre- and postconditions. In the following, we will focus on sup-
port for validating pre- and postconditions. This new feature was not available
in the version of the tool presented in [24] but has been added recently. The
input for the USE tool is a textual specification of a UML model. As an example
we use the model introduced in Figure 1. The corresponding USE specification
is given in Appendix A. It describes the model found in the class diagram and
the OCL constraints.

Figure 4 shows a screenshot of the USE tool visualizing various aspects of
the example model. The left side of the window shows static information about
the model whereas the right side contains several views each showing a different
aspect of the dynamic system.

A user produces different system states by (1) adding or deleting objects,
(2) inserting and removing links between them, (3) setting attribute values, and
(4) simulating operation calls. The screenshot shows a system state after the
commands listed in Appendix B have been executed. The view at the bottom
right also partially shows the sequence of commands that led to the current
state. These commands can be issued directly although most of them can more
conveniently be triggered by intuitive interactions with the graphical user inter-
face. For example, objects can be created by selecting a class and dragging it
onto the object diagram.

The view at the top shows an object diagram with several objects, their
attribute values and links between these objects. The small view labelled “Class
Invariants” indicates that the two invariants we have defined in Section 2 are
satisfied by the current snapshot.

The automatically generated sequence diagram shows the message flow be-
tween objects. In this example, the operation raiseSalary with a parameter value
200 has been called for the employee Frank who previously had a salary of 4500.
An interactive command window (not shown in the figure) reports the success
of both the pre- and the postconditions. In case of a failing precondition the
operation could not have been entered at all. A failing postcondition would be
visualized with a red return arrow in the sequence diagram. In both cases, a
detailed report on the evaluation of expressions gives hints to the user why the
conditions failed.
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Fig. 4. Screenshot of USE tool

The commands simulating an operation call are the following.

-- call operation raiseSalary

lopenter frank rai seSal ary(200)

Iset self.salary = self.salary + anmount
lopexit 4700

An operation call is simulated by first issuing an opent er command with a
source expression, the name of the operation, and an argument list. The open-
t er command has the following effect.

1. The source expression is evaluated to determine the receiver object.

2. The argument expressions are evaluated.

3. The OCL variable sel f is bound to the receiver object and the argument
values are bound to the formal parameters of the operation. These bindings
determine the local scope of the operation.

4. All preconditions specified for the operation are evaluated.

5. If all preconditions are satisfied, the current system state and the operation
call is saved on a call stack. Otherwise, the operation call is rejected.



The side effects of an operation are specified with the usual USE commands

for changing a system state. In the example, the set command assigns a new
value to the salary attribute of the employee. After generating all side effects of
an operation, the operation can be exited and its postconditions can be checked.
The command opexit simulates a return from the currently active operation.
The result expression given with this command is only required for operations
that specify a result value. The opexit command has the following effect.

1.
2.

The currently active operation is popped from the call stack.
If an optional result value is given, it is bound to the special OCL variable
result.

. All postconditions specified for the operation are evaluated in context of the

current system state and the pre-state saved at operation entry time.

. All variable bindings local to the operation are removed.

In our example, the postcondition is satisfied and the operation has been

removed from the call stack. We give another example that shows how operation
calls may be nested in the simulation. It also shows that postconditions may
be specified on operations without side effects. An OCL expression is given to
describe the computation of a side effect free operation. In the example, we use
a recursive definition of the factorial function.

nodel NestedOperationCalls

cl ass Rec
operations
fac(n : Integer) : Integer =
if n<=1then 1 elsen* self.fac(n - 1) endif
end

constraints
context Rec::fac(n : Integer) : Integer

pre: n >0
post: result = n * fac(n - 1)

The postcondition of the operation Rec: : f ac reflects the inductive case

of the definition of the factorial function. The following commands show the
computation of 3!.

create r : Rec
openter r fac(3)
openter r fac(2)
openter r fac(1l)
opexit 1

opexit 2

opexit 6



The operation calls are exited in reverse order and provide result values that
satisfy the postcondition. Figure 5 shows the sequence diagram generated from
this call sequence. The stacked activation frames in the diagram emphasize the

recursion.

fac(3)

Fig. 5. Sequence diagram for recursive operation call

7 Conclusion

OCL is an important part of UML. Many constraints that cannot be expressed
in the UML diagram notation can be elegantly stated with OCL expressions. We
argued that a formal language like OCL also should have a formal semantics and
presented our approach to developing a precise semantics of OCL. This semantics
covers expressions, invariants, contexts, and pre- and postconditions. The con-
cepts and results presented here are implemented in an UML/OCL CASE tool
for rapid prototyping and validation of UML designs including OCL expressions.
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Appendix

A USE Specification of the example model

nodel

nmodel Conpany

cl ass Enpl oyee
attributes

name : String
age : Integer
salary : Real

oper ations



rai seSal ary(anount : Real) : Rea
end

cl ass Depart nment
attributes
name : String
location : String
budget : Integer
end

cl ass Project
attributes
name : String
budget : Integer
end

associ ati on Worksln between
Enpl oyee[ *]
Department[1..*]

end

associ ati on WrksOn bet ween
Enpl oyee[ *]
Proj ect[*]

end

associ ation Controls between
Department[ 1]
Proj ect[*]

end

-- OCL constraints
constraints

cont ext Departnent inv:
sel f. budget >= 0

-- Enpl oyees working on nore projects than other
-- enpl oyees of the same departnment get a higher salary.
context Departnment inv:
sel f. enpl oyee->forAl | (el, e2
el. project->size > e2.project->size
inplies el.salary > e2.sal ary)

-- If the ampunt is positive, raise

-- the salary by the given amount

cont ext Enpl oyee::raiseSalary(anbunt : Real) : Rea
pre: anount > 0
post: self.salary = self.salary@re + anpunt



and result = self.salary

B Commands for Animating a Model

-- create departnment

I create cs: Departnment

I'set cs.nanme = ' Conputer Science
I'set cs.location = 'Brenen’

I set cs. budget = 10000

-- create enpl oyee john
Icreate john : Enpl oyee
I'set john.nane = 'John’
I'set john.salary = 4000

-- create enpl oyee frank
Icreate frank : Enpl oyee
I'set frank.name = ' Frank’
I'set frank.salary = 4500

-- establish Worksln |inks
linsert (john,cs) into Wrkslin
linsert (frank,cs) into Wrksin

-- create project research
Icreate research : Project

Iset research. namre = ' Research’
I'set research. budget = 12000

-- create project teaching

Icreate teaching : Project

Iset teaching.nane = 'Validating UM
I set teaching. budget = 3000

-- establish Controls |inks
linsert (cs,research) into Controls
linsert (cs,teaching) into Controls

-- establish WrksOn |inks

linsert (frank,research) into WrksOn
linsert (frank,teaching) into WrksOn
linsert (john,research) into WrksOn

-- call operation raiseSalary

lopenter frank raiseSal ary(200)

Iset self.salary = self.salary + anmount
lopexit 4700



