
Verifying JML specifications with model fields

Cees-Bart Breunesse? and Erik Poll

Department of Computer Science, University of Nijmegen

Abstract. The specification language JML (Java Modeling Language) pro-
vides model fields as a means to abstract away from implementation details
in specifications. This paper investigates how specifications with model fields
can be translated to proof obligations. In order to do this, the semantics of
model fields has to be made precise.

1 Introduction

The Java specification language JML (Java Modeling Language) [LBR01] provides
model fields to allow specifications to abstract away from implementation details
[CLSE03]. Model fields in JML play the role that abstract values play for tradi-
tional abstract data types. The idea is that clients of a class can use an abstract
specification in terms of model fields, and that only when implementing the class
we have to know how these abstract model fields are related to the actual concrete
representation.

The ability to handle model fields is vital if our efforts at program verification
with the LOOP tool [BJ01], or any other verification technology, are to scale up to
bigger programs. This paper investigates how specifications with model fields can
be translated to proof obligations as Hoare triples, or rather n-triples in the style of
[JP01]. We only look at this issue from the point of view of someone implementing
a class whose specification relies on model fields. The translation of specifications
into these proof obligations is being incorporated in the LOOP tool, but we describe
the translation at a relatively high level of abstraction here, so that it should be
useful for other groups working on verification tools. More generally, it can be seen
as an attempt at precisely defining the semantics of JML. To better understand
model fields, we investigate several syntactic (de)sugarings of JML specifications
with model fields. This paper does not try to give a definite answer on how to
handle model fields. It is an attempt to clarify some issues, and to show possible
solutions. Further investigations and case-studies must show which approach must
be used in what setting.

The outline of the rest of the paper is as follows. Section 2 gives a brief introduction
to the use of model fields in JML specifications. There are two ways in which an
implementation can declare its concrete representation of a model field in JML. The
first and simpler way is to give an explicit definition of this representation, by means
of a representation function, using the operator <-. This is discussed in Section 3.
The second, more general, way is to give a representation relation between the
model field and its representation, using the keyword \such_that. This is discussed
in Section 4. Dealing with these \such_that clauses poses the main challenge.

interface MyIntInterface {

/*@ model int myint;

invariant 0 <= myint && myint < 512 @*/

/*@ requires true;

assignable myint;

ensures myint == (\old(myint) + 1) % 512; @*/

void succ();

}

Fig. 1. Java/JML Interface: MyIntInterface

2 JML specifications with model fields

Our (extremely simple) running example of a JML specification with a model field
is given in Fig. 1. It declares a model field myint that represents an integer value
between 0 and 512. Such a model field is an imaginary field that can only be used
for specification purposes. For instance, in Fig. 1, the model field myint is used in
the specification of the method succ. This specification consists of several clauses:

– the requires clause specifies the pre-condition,
– the assignable clause lists fields or model fields which may be altered (in the

case of a model field we means its dependees),
– the ensures clause specifies the post-condition that must be satisfied when succ

terminates normally,
– the invariant clause specifies a class invariant, which is implicitly included in

all pre- and postconditions.

For a client – i.e. someone using objects of type MyIntInterface – dealing with
such a model field is quite different than for someone who is implementing a class
that implements MyIntInterface:

– Essentially, clients can treat a model field as a Java field, and forget about the
fact that it’s not a real field, but that there is some representation hiding behind
a model field. Unfortunately, this is only true if the representation is properly
encapsulated, and if there are no unexpected ways in which one might alter the
representation of the model field myint. Ensuring such proper encapsulation is
an important and active research topic. A solution has been proposed for JML,
using so-called universes, in [MPHL03]. We will completely ignore this issue in
this paper, and we can, because we only look at model fields from the point of
view of someone implementing a class that has model fields.

– Implementors will have to specify how the abstract model field myint is rep-
resented in the concrete implementation. In JML, this is done with so-called
represents and depends clauses. These determine what concrete proof obliga-
tions follow from the abstract specification. This is the topic of this paper.

There are two kinds of represents clause:

– The first (using the <- notation) gives an explicit definition of the model field in
terms of the real fields, by means of a representation function. For an example,
see Fig. 2. This example, and the way to handle it, is discussed in Section 3.
Dealing with such a represents clause is easy: we can basically treat the model
field as a macro that is expanded to get the concrete proof obligations.

? Supported by the EU IST project VerifiCard (IST-2000-26238)

2

class MyIntImpl1 implements MyIntInterface {

/*@ represents myint <- (f ? 256 : 0) + (b & 0xFF);

depends myint <- b,f; @*/

byte b;

boolean f;

void succ() {

f = (b == -2) ^ f;

b = (byte)(b + 1);

}

}

Fig. 2. An implementation using <-: MyIntImpl1

– The second (using the \such_that notation) more general kind only specifies a
representation relation between the model field and the real fields. For an exam-
ple, see Fig. 3. Dealing with these representation relations is more complicated,
and is the main topic of this paper. This is discussed in Section 4.

3 Model fields with representation functions (using <-)

In JML an explicit definition of the model field in terms of the real fields can be
given using a represents clause of the following form

//@ represents myint <- ...

Here the expression to the right of the <-, in this case an integer expression, gives
the representation function for the model field.

For example, in Fig. 2 a boolean and a byte are used to implement myint. Together,
a boolean and a byte can represent a 9 bit numerical value, i.e. an integer between
0 and 512. The boolean f in Fig. 2 serves as the most significant bit. The represents
clause in Fig. 2 gives an explicit definition of the model field myint in terms of the
concrete representation in the field b and f. 1

3.1 Syntactic desugaring: model fields as macros

To verify that the concrete implementation MyIntImpl1 given in Fig. 2 meets the
abstract specification MyIntInterface given in Fig. 1 is relatively straightforward.
Basically, we can just treat the model field myint in the abstract specification
MyIntInterface as a macro, and expand it to obtain the concrete proof obligation
for MyIntImpl1. More specifically:

– we replace all occurrences of myint in assignable clauses by the depends clause
specified in MyIntImpl1, i.e. by “b,f”.

– we replace all other occurrences of myint by the represents clause specified in
MyIntImpl1, i.e. by “(f ? 256 : 0) + (b & 0xFF)”.

1 This involves some Java technicalities: the Java expression b & 0xFF is the unsigned
interpretation of the byte b, i.e. a value between 0 and 255.

3

class MyIntImpl2 implements MyIntInterface {

/*@ represents myint \such_that (!f ==> myint == (b & 0xFF)) &&

(f ==> myint == (b & 0xFF) + 256);

depends myint <- b,f; @*/

byte b;

boolean f;

void succ() {

...

}

}

Fig. 3. An implementation using \such that: MyIntImpl2

Note that we then end up with a specification which no longer refers to a model
field. We can deal with such specification already with the LOOP tool, so we can
verify that MyIntImpl1 meets this specification in the standard way.

This macro expansion in not done at the syntactical level by the LOOP tool, but is
incorporated in the translation of JML to PVS. Basically, a model field is treated
as a Java field, but instead of looking up its value from the heap, its value is defined
using the representation function.

4 Model fields with representation relations (using
\such that)

Figure 3 shows class MyIntImpl2, which has the same implementation as class
MyIntImpl1, but a different represents clause. The represents clause here uses a
\such_that clause to specify a relation between the model field x and the real fields
f and b. In this particular example, the relation is a total, one-to-one relation: for any
given values of b and f there exists exactly one value of myint in the representation
relation. In fact, the representation relation is simply the representation function
specified in Figure 2, written in a different way.

However, in general a representation relation need not be a function. For example,
the representation relation in Figure 4 is a partial relation, and it is many-to-one:
given values of the concrete fields j and k there can be many values, or none, for
the model field x that are in the representation relation.

Dealing with such representation relations, that are not total and one-to-one, is
more difficult than dealing with functionals ones. We therefore distinguish three
kinds of rep clauses:

1. “rep functions”, written using the <- notation,
2. “functional rep relations”, written using \such_that, but which specify a total,

one-to-one function.
3. “proper rep relations”, written using the \such_that, that are proper relations,

i.e. not functions.

A reason for using the second kind of rep clause rather than the first can be conve-
nience; some people may find it easier to read the rep clause in Fig. 3 than the one
in Fig. 2.

4

class A {

int j,k;

//@ model int x;

//@ represents x \such_that (j <= x && x <= k);

/*@ requires true;

ensures false; */

void m() {

j = 1;

k = 0;

// there is no x such that j <= x <= k !

}

void n() {

j = 10;

k = 12;

//@ assert x == 10;

}

}

Fig. 4. Example class A

For the remainder of this section, suppose we have a model field and represents
clause as follows:

//@ model t x;
//@ represents x \such_that R(x, q);

where
t is a type,
x is a model field,
q is a vector of fields which make up the concrete representation of x,
R is the rep relation between x and q.

In class A of Fig. 4, the vector q contains j and k.

4.1 Axiomatic approach

The approach used in [Lei00] is to consider the representation relation R as an
axiom. This means one simply assumes that, at any point in the program, the model
field x has some value satisfying the representation relation R. In other words, we
treat R(x, q) as an axiom that holds at every program point:

Approach 1 At any point in the program we assume that the model field x has
some value such that R(x, q) holds.

This approach is sound for rep functions and functional rep relations, but unsound
for some proper rep relations. Consider for example the class A in Fig. 4. The, clearly
incorrect, specification for method m can be proved correct using approach 1: if we
assume that (j <= x && x <= k) holds at the end of the method m(), then we
have a contradiction, and we can deduce the postcondition false.

5

Clearly, the problem with using R as an axiom arises in program states for which
there is no x that satisfies R, i.e. if our representation relation is not total. Be-
cause [Lei00] considers only rep functions or functional rep relations, the axiomatic
approach is sound in that setting.

4.2 Desugaring approach

Proper rep relations are tricky. There may be program points in which there is no
value for the model field x that satisfies R. We therefore cannot assume that R holds
everywhere, as the example above illustrates. When the model field x is mentioned
in say a postcondition, we must make sure that there actually exists a value for x
that satisfies R.

We can try to formalise this idea by desugaring every JML predicate (i.e. every JML
boolean expression in a requires, ensures, assert or invariant clause) into an
existential quantification which no longer has free occurrences of a model field x.
Such syntactic desugarings are a convenient way to explain many details about the
semantics of JML, e.g. see [RL00].

Approach 2 Any JML predicate A(x) that possibly refers to the model field x is
desugared to the JML predicate

(\exists t x; R(x, q) && A(x))

where R is the representation relation.

Again, let us consider class A in Fig. 4 to observe whether approach 2 makes sense.
We no longer have the problem with the specification for method m that occurred
in the axiomatic approach, as clearly we cannot establish the postcondition

(\exists int x; j <= x && x <= k && false)

for method m().

However, now we have a problem with method n(). Applying the desugaring given
in approach 2 to the assert in method n results in the desugared assert:

//@ assert (\exists int x; j <= x && x <= k && x == 10);

This assertion is clearly true. However, the representation relation also allows 11
or 12 as possible values for the model field x, if j == 10 and k == 12. So the
assertion that x == 10 does not necessarily hold at the end of n(), and should not
be provable.

This illustrates that approach 2 is not what we want. The problem is caused by the
fact that the representation relation is many-to-one. A more complicated desugaring,
which we argue is sound, is to say that an assertion of the form

//@ assert A(x);

means that A holds for every possible value of x that satisfies the representation
relation R, instead of just one, which is expressed approached 2. Moreover, there
should be at at least one possible value for x satisfying R. This leads to our second
desugaring approach:

6

Approach 3 Any JML predicate A(x) that possibly refers to the model field x is
desugared to the JML predicate

(\forall t x; R(x, q) ==> A(x)) && (\exists t x; R(x, q))

where R is the representation relation.

Taking approach 3 the assert in method n is desugared to

//@ assert (\forall int x; (j <= x && x <= k) => x == 10) &&
//@ (\exists int x; (j <= x && x <= k));

for which the first part of the conjunction resolves to false, which is what we would
expect. The strongest condition that we would expect to hold after execution of n
is

//@ assert x == 10 || x == 11 || x == 12;

which covers the full range of possible values of x. Using approach 3, this is indeed
the strongest postcondition that can be established.

Although desugaring approach 3 is what we need to tackle representation relations,
the existential quantifications it involves can be quite a burden during proofs: during
the verification of a method, at many times will witnesses for these existential
quantifications have to be constructed by hand. The existential quantifier pops
up every time a JML predicate referencing x is encountered. For fully annotated
programs, these occurrences can be numerous.

To avoid giving a witness every time a model field is encountered, the person writ-
ing the specs might check whether the represents clause is a functional represents
relation, which can directly be rewritten to a rep function using <=. If we are actu-
ally confronted with a proper represents relation, there is another way to avoid the
problem with existential quantifiers, which we discuss in the next section.

4.3 Model fields as methods

An alternative desugaring of JML specifications that use model fields to JML specifi-
cations that does not use a model field, is to replace a model field by a method whose
postcondition corresponds to the representation relation. (This method should maybe
be a specification-only method, or, in JML-speak, a model method, but we ignore
that issue here.)

For example, the model field myint used in Figure 3 could be desugared as shown
in Figure 4.3. Note that the postcondition of the method myint() in Figure 4.3 is
exactly the representation relation for the model field myint given in Figure 3.

The need for the keywords pure and helper is rather technical, and probably best
ignored by people not familiar with or interested in the obscure details of JML2.
It is of course simple to give an implementation of myint(), but we do not really
have to do this, if we are satisfied with reasoning about myint() on the basis of its
specification.
2 The keyword pure means that the method myint() does not have any side-effects;

this is required in order to be allowed to use the method in specifications, e.g. the
postcondition of succ() and the invariant. The keyword helper means that the invariant
is not implicitly included in the pre- and postcondition of myint().

7

class MyIntImpl2 implements MyIntInterface {

byte b;

boolean f;

/*@ requires true;

ensures (!f ==> \result == (b & 0xFF)) &&

(f ==> \result == (b & 0xFF) + 256); @*/

/*@ pure helper @*/ int myint() {

...

}

//@ invariant 0 <= myint() && myint() < 512;

/*@ requires true;

assignable b,f;

ensures myint() == (\old(myint()) + 1) % 512;

@*/

void succ() {

...

}

}

Fig. 5. Replacing model field by a method

In general, replacing a model field by a method can be more complicated that in
the example above. If we have a partial representation relation, as was the case in
the class A in Fig. 4, things are a bit more complicated. A first attempt at replacing
the model field x by a method for class A in Fig. 4 might be:

class A{
int j,k;

/*@ requires true;
ensures j <= \result && \result <= k @*/

/*@ pure helper @*/ int x() {
...

}

/*@ requires true;
ensures false; @*/

void m() {
j = 1;
k = 0;
// there is no x such that j <= x <= k !

}
...

However, here we run into the same problem as for approach 2, namely that we can
prove the correctness of the – clearly inconsistent – spec for m(), if we assume the
specification of myint() is correct. Again, the problem is that in the post-state of
m() there exists no value for x() satisfying its spec.

8

The solution to this is that we should specify a suitable precondition for x() which
ensures that its postcondition is satisfiable, e.g.

/*@ requires j <= k;
ensures j <= \result && \result <= k @*/

/*@ pure helper @*/ int x()

This specification for x() is satisfiable, something which could be established by
proving

(j <= k) ==> (\exists int x; j <= x <= k)

or by providing an implementation for x() and proving that it meets the specifica-
tion.

Let us make the approach above a bit more precise:

Approach 4 We introduce a method x() to replace a model field x, and

– replace every occurrence of the model field x in a JML predicate by a call to the
method x(),

– replace the declaration of model field x by a pure helper method x(), with a suit-
ably chosen precondition P , and as a postcondition the representation relation,
with \result substituted for x, i.e.

/*@ requires P;
ensures R(\result, q) */

private model helper int x()

for which one proves

P ==> (\exists t; R(x, q))

possibly by giving an implementation for x() and proving that it meets its spec-
ification.

The main advantage of using approach 4 instead of approach 3 is that, provided P
can be kept simple, it is less work to prove P than to construct a witness x that
satisfies R(x, q), at every program point where the model field is used in a JML
predicate.

5 Conclusions and Future Work

In this paper we looked only at model fields from the perspective of someone im-
plementing a class that has model fields, not from the perspective of a client using
such a class. This implementors’ perspective was definitely more complex than we
first anticipated, due to the possibility of representation relations, which may be
partial or many-to-one, rather than using a representation functions.

Handling representation functions is relatively straightforward, but representation
relations, when they are not total functions in disguise, are a big burden when it
comes to verifying programs, as illustrated in Section 4.2. The alternative approach
of looking at model fields as methods, discussed in Section 4.3, can save a lot of
effort in verifying programs, at the cost of some extra work in specifying, namely
coming up with a suitable precondition for the method replacing the model field.

9

Note that the approach discussed in Section 4.3, to introduce methods for model
fields, can also be useful when doing runtime assertion checking. The JML run-
time assertion checker [Che03,CL02] can perform runtime checks for assertions
that involve a model field, but only if a representation function is specified using
<-, not if a \such_that clause is given. For a model field x with a very compli-
cated, but functional, rep relation, it usually is possible to define a method x()
that computes this function and then replace the original \such_that clause by
“arepresent x <- x();”. Doing this would allow more assertions to be checked
at runtime.

So far, we have only investigated relatively simple examples using model fields.
For more complicated examples, that make use of the JML model classes which
represent mathematical concepts such as sets and relations, we would of course like
to express the proof obligations not in terms of Java implementations of sets and
relations, but directly in terms of the underlying mathematical notions. (In our
case, because we use PVS to prove our proof obligations, we would like to use PVS
sets and relations.) This is still left as future work.

Acknowledgements
We would like to thank the anonymous referees for their comments, which were a
great help in improving the paper.

References

[BJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In T. Margaria and W. Yi, editors, TACAS’01, volume 2031 of LNCS,
pages 299–312. Springer, Berlin, 2001.

[Che03] Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language.
PhD thesis, Iowa State University, 2003. Available as Technical Report TR 03-
09, Department of Computer Science, Iowa State University.

[CL02] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the
Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun,
editors, the International Conference on Software Engineering Research and
Practice (SERP ’02), pages 322–328. CSREA Press, June 2002.

[CLSE03] Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: Cleanly supporting abstraction in design by contract. Tech-
nical Report 03-10, Department of Computer Science, Iowa State University,
April 2003. Available from archives.cs.iastate.edu.

[JP01] Bart Jacobs and Erik Poll. A logic for the Java Modeling Language JML.
In H. Hussmann, editor, Fundamental Approaches to Software Engineering
(FASE), volume 2029 of LNCS, pages 284–299. Springer, Berlin, 2001.

[LBR01] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of
JML: A behavioral interface specification language for Java. Technical Report
98-06p, Iowa State University, Department of Computer Science, August 2001.
See www.jmlspecs.org.

[Lei00] Greg Leino, K. Rustan M. and Nelson. Data abstraction and information hiding.
Technical Report SRC 160, Compaq Systems Research Center, 2000.

[MPHL03] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular specifica-
tion of frame properties in JML. Concurrency and Computation: Practice and
Experience, 15(2):117–154, 2003.

[RL00] Arun D. Raghavan and Gary T. Leavens. Desugaring JML method specifica-
tions. Technical Report 00-03a, Iowa State University, Department of Computer
Science, July 2000.

10

