
Introduction to JML
Erik Poll, Joe Kiniry, David Cok

University of Nijmegen; Eastman Kodak Company

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.1/34

Outline of this talk

What this set of slides aims to do

• introduction to JML

• provide overview of tool support for JML (jmlrac,
jmlunit, escjava)

• explain idea of extended static checking and difference
with runtime assertion checking

• some more ESC/Java2 tips

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.2/34

The Java Modeling Language
JML

www.jmlspecs.org

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.3/34

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.4/34

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.4/34

JML

To make JML easy to use:

• JML assertions are added as comments in .java file,
between /*@ . . .@*/, or after //@,

• Properties are specified as Java boolean expressions,
extended with a few operators (\old, \forall, \result,
. . .).

• using a few keywords (requires, ensures,
signals, assignable, pure, invariant,
non null, . . .)

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.5/34

requires, ensures

Pre- and post-conditions for method can be specified.

/*@ requires amount >= 0;

ensures balance == \old(balance)-amount &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.6/34

requires, ensures

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ensures true” can be
omitted.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.7/34

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debit, it is the obligation of
the client to ensure that amount is positive. The requires
clause makes this explicit.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.8/34

signals

Exceptional postconditions can also be specified.

/*@ requires amount >= 0;

ensures true;

signals (ISOException e)

amount > balance &&

balance == \old(balance) &&

e.getReason()==AMOUNT_TOO_BIG;

@*/

public int debit(int amount) {

...

}

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.9/34

signals

Exceptions are allowed by default, i.e. the default signals
clause is
signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.10/34

invariant

Invariants (aka class invariants) are properties that must be
maintained by all methods, e.g.,

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance &&

balance <= MAX_BAL;

@*/
...

Invariants are implicitly included in all pre- and
postconditions.

Invariants must also be preserved if exception is thrown!

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.11/34

invariant
Invariants document design decisions, e.g.,

public class Directory {

private File[] files;

/*@ invariant

files != null

&&

(\forall int i; 0 <= i && i < files.length;

; files[i] != null &&

files[i].getParent() == this);
@*/

Making them explicit helps in understanding the code.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.12/34

non_null

Many invariants, pre- and postconditions are about
references not being null. non_null is a convenient
short-hand for these.

public class Directory {

private /*@ non null @*/ File[] files;

void createSubdir(/*@ non null @*/ String name){

...

Directory /*@ non null @*/ getParent(){

...

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.13/34

assert

An assert clause specifies a property that should hold at
some point in the code, e.g.,

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...
}

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.14/34

assert

JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

...

for (n = 0; n < a.length; n++)

if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;

a[i] != null);
@*/

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.15/34

assignable

Frame properties limit possible side-effects of methods.

/*@ requires amount >= 0;

assignable balance;

ensures balance == \old(balance)-amount;

@*/

public int debit(int amount) {

...

E.g., debit can only assign to the field balance.
NB this does not follow from the post-condition.

Default assignable clause: assignable \everything.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.16/34

pure

A method without side-effects is called pure.

public /*@ pure @*/ int getBalance(){...

Directory /*@ pure non null @*/ getParent(){...

Pure method are implicitly assignable \nothing.

Only pure methods can be used in specifications.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.17/34

visibility

JML supports the standard Java visibilities:

public int pub; private int priv;

//@ requires i <= pub;

public void pub1 (int i) { ... }

//@ requires i <= pub && i <= priv;

private void priv1 (int i) ...

//@ requires i <= pub && i <= priv; // WRONG !!

public void pub2(int i) { ... }

Specs of public methods may not refer to private fields.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.18/34

visibility: spec_public

Keyword spec public loosens visibility for specs.
Private spec public fields are allowed in public specs,
e.g.:

public int pub;

private /*@ spec public @*/ int priv;

//@ requires i <= pub && i <= priv; // OK

public void pub2(int i) { ... }

Exposing private details is ugly, of course. A nicer, but more
advanced alternative in JML is to use public model fields to
represent (abstract away from) private implementation details.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.19/34

Tools for JML

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.20/34

tools for JML

• parsing and typechecking

• runtime assertion checking:
test for violations of assertions during execution
jmlrac

• extended static checking:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.21/34

tools for JML

• parsing and typechecking

• runtime assertion checking:
test for violations of assertions during execution
jmlrac

• extended static checking:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.21/34

tools for JML

• parsing and typechecking

• runtime assertion checking:
test for violations of assertions during execution
jmlrac

• extended static checking:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.21/34

runtime assertion checking

jmlrac compiler by Gary Leavens et al. at Iowa State Univ.

• translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing, because more properties are tested, at
more places in the code

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmlrac and unit testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.22/34

runtime assertion checking

jmlrac compiler by Gary Leavens et al. at Iowa State Univ.

• translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing, because more properties are tested, at
more places in the code

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmlrac and unit testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.22/34

runtime assertion checking

jmlrac compiler by Gary Leavens et al. at Iowa State Univ.

• translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing, because more properties are tested, at
more places in the code

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmlrac and unit testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.22/34

runtime assertion checking

jmlrac compiler by Gary Leavens et al. at Iowa State Univ.

• translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing, because more properties are tested, at
more places in the code

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmlrac and unit testing.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.22/34

runtime assertion checking

jmlrac can generate complicated test-code for free. E.g., for

/*@ ...

signals (Exception)

balance == \old(balance);

@*/

public int debit(int amount) { ... }

it will test that if debit throws an exception, the balance
hasn’t changed, and all invariants still hold.

jmlrac even checks \forall if the domain of quantification is
finite.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.23/34

extended static checking

ESC/Java(2)

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.24/34

extended static checking

ESC/Java(2)

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.24/34

extended static checking

ESC/Java(2)

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.24/34

extended static checking

ESC/Java(2)

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.24/34

extended static checking

ESC/Java(2)

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.24/34

static checking vs runtime checking

Important differences:

• ESC/Java2 checks specs at compile-time,
jmlrac checks specs at run-time

• ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence

• ESC/Java2 independent of any test suite,
results of runtime testing only as good as the test
suite,

• ESC/Java2 provides higher degree of confidence.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.25/34

static checking vs runtime checking

One of the assertions below is wrong:

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...

}

Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.26/34

modular reasoning (1)

ESC/Java2 reasons about every method individually. So in

class A{

byte[] b;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won’t be.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.27/34

modular reasoning (1)

To stop ESC/Java2 complaining: add a postcondition

class A{

byte[] b;

//@ ensures b != null && b.length = 20;

public void n() { a = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

So: property of method that is relied on has to be made
explicit.
And: subclasses that override methods have to preserve
these.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.28/34

modular reasoning (2)

Similarly, ESC/Java will complain about b[0] = 2 in

class A{

byte[] b;

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you’ll have
to inspect all constructors and all methods.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.29/34

modular reasoning (2)

To stop ESC/Java2 complaining here: add an invariant

class A{

byte[] b;

//@ invariant b != null && b.length == 20;

// or weaker property for b.length ?

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.30/34

assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

...

//@ assume b != null && b.length > 0;

b[0] = 2;

...
Especially useful during development, when you’re still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requires can be understood as a form of assume.)

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.31/34

more JML tools

• javadoc-style documentation: jmldoc

• Other red verification tools:
• LOOP tool + PVS (Nijmegen)
• JACK (Gemplus/INRIA)
• Krakatoa tool + Coq (INRIA)

These tools (also) aim at interactive verification of
complex properties, whereas ESC/Java2 aims at
automatic verification of relatively simple properties.

• runtime detection of invariants: Daikon (Michael Ernst,
MIT)

• model-checking multi-threaded programs: Bogor
(Kansas State)

See www.jmlspecs.org

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.32/34

Acknowledgements

Many people and groups have contributed to JML and
related tools.

• Gary Leavens led the JML effort at Iowa St. Contributors
include Albert Baker, Clyde Ruby, Curtis Clifton, Yoonsik
Cheon, Anand Ganapathy, Abhay Bhorkar, Arun Raghavan,
Kristina Boysen, David Behroozi. Katie Becker, Elisabeth
Seagren, Brandon Shilling, Katie Becker, Ajani Thomas, and
Arthur Thomas.

• The ESC project at SRC included K. Rustan M. Leino,
Cormac Flanagan, Mark Lillibridge, Greg Nelson, Raymie
Stata, and James Saxe.

• Bart Jacobs led the LOOP (now SoS) group at Nijmegen.
Contributors include Erik Poll, Joachim van den Berg,
Marieke Huisman, Cees-Bart Breunesse, and Joe Kiniry.

• David Cok is a primary contributor to JML and ESC/Java2.
Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.33/34

More information

These websites and mailing lists can provide more
information (and have links to even more):

• JML: www.jmlspecs.org

• mailing lists: jmlspecs-interest@lists.sourceforge.net
jmlspecs-developers@lists.sourceforge.net

• ESC/Java2: www.cs.kun.nl/sos/research/escjava

• ESC/Java: www.research.compaq.com/SRC/esc/

• mailing list: jmlspecs-escjava@lists.sourceforge.net

Erik Poll - ESC/Java2 Tutorial - June 2004 - JML – p.34/34

	Outline of this talk
	{Large
ed The Java Modeling Language \ JML \ [2ex] {large �lack 	exttt {www.jmlspecs.org}}}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	requires, ensures
	requires, ensures
	Design-by-Contract
	signals
	signals
	invariant
	invariant
	non_null
	assert
	assert
	assignable
	pure
	visibility
	visibility: spec_public
	{Large
ed Tools for JML}
	tools for JML
	runtime assertion checking
	runtime assertion checking
	extended static checking
	static checking vs runtime checking
	static checking vs runtime checking
	modular reasoning (1)
	modular reasoning (1)
	modular reasoning (2)
	modular reasoning (2)
	assume
	more JML tools
	Acknowledgements
	More information

