
1

CIS 771: Software Specifications

Lecture -- Week 14: Design by Contract

Copyright 2001-2002, Matt Dwyer, John Hatcliff, and Rod Howell. The syllabus and all lectures for this course are
copyrighted materials and may not be used in other course settings outside of Kansas State University in their current
form or modified form without the express written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

Exploiting Design Information

n Alloy and UML/OCL provide a means for
expressing properties of designs
n Early design refinement saves time

n Ultimately, we want this effort to impact the
quality of implementations

n How can we transition design information to
the code?
n State information (multiplicities, invariants, …)
n Operations info (pre, post, frame conditions, …)

2

Design By Contract...

n is a method that emphasizes the precise
description of interface semantics
n not just syntax, e.g., signatures
n but behavior, e.g., effects of a method call

n It is supported by tools that
n allow semantic properties of the design to be

propagated to the code
n support various forms of validation of those

properties

Basic Idea

n Software is viewed as
n a system of communicating components
n all interaction is governed by contracts
n contracts are precise specifications of mutual

obligation

n Note that contracts are bi-directional
n both parties are obligated by them

3

Specifications are Necessary

n but not sufficient for software quality
n The Law of Excluded Miracles

Without a specification we have no hope of a
system that works properly

n Content of specification varies
n Lightweight (partial)
n Complete behavioral specification

n Tool support varies
n Commercial/research, Static/dynamic checking

Contracts

n Two parties are involved in a contract
n The supplier performs a task
n The client requests that the task be

performed
n Each party

n has obligations
n receives some benefits

n Contracts specify those obligations and
benefits

4

Air Travel

Client (Traveler)
n Obligation

n check in 10 minutes
before boarding

n <3 small carry-ons
n buy ticket

n Benefit
n reach Boston

Supplier (Airline)
n Obligation

n take traveler to Boston

n Benefit
n don’t need to wait for late

travelers
n don’t need to store

arbitrary amounts of
luggage

n money

Contracts

n Specify what should be done
n they are implementation independent

n This same idea can be applied to software
using the building blocks we’ve learned
n Pre-conditions
n Post-conditions
n Frame-conditions
n Invariants

5

Taking a flight
Class Flight {

/**
* @pre time < this.takeoff – 10
* @pre l.number < 3
* @pre p in this.ticketed
* @post result = this.destination
*/

Destination takeFlight(Person p, Luggage l) {…}
}

Specification or Coding Language

n Why not both?
n Refinement methodology

n rather than develop signatures alone
n develop contract specification
n analyze client-supplier consistency
n fill in implementation details
n check that code satisfies contract

n Natural progression from design to code

6

Java Example

import java.util.Vector;

public interface ICompany {
public Vector getEmployees();
public Vector getRooms();
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}

Java Example
import java.util.Vector;
public interface ICompany {

public Vector getEmployees();
public Vector getRooms();

/**
* @pre employee != null
* @pre !getEmployees().contains(employee) // do not employ twice
* @pre !employee.hasOffice() // does not own an office somewhere else
* @pre roomsAvailable() // there must be an office left
*
* @post getEmployees().contains(employee) // added to list of employees
* @post getRooms().contains(employee.getOffice()) // assign one of our offices
* @post employee.hasOffice() // office assigned
* @post employee.getOffice().getOwner() == employee // correct office owner?
*/
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}

7

Source Specifications

n Pre/post conditions
n Boolean expressions in the host language

n What about all of the expressive power
we have in, e.g., OCL?
n Balance power against checkability
n Balance abstractness against language

mapping

n No one right choice
n Different tools take different approaches

Java Example with OCL
import java.util.Vector;
/**
* Each employee gets a single office (uniqueness constraint)
* @invariant forall IEmployee e1 in getEmployees().elements() |
* forall IEmployee e2 in getEmployees().elements() |
* (e1 != e2) implies e1.getOffice() != e2.getOffice()
*/
public interface ICompany {
public Vector getEmployees();
public Vector getRooms();
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}

8

Mapping OCL
n The OCL iterate operation

n Properties should be independent of order
n So, any order will do

n Variants of iterate can be mapped to fragments
of code for classes with java.util.Enumerations

@invariant forall C c in o.elements() | P(c)

boolean result = true;
for (Enumeration e = o.elements();

e.hasMoreElements() && result;) {
c = (C)e.nextElement();
result = P(c);

}

For You To Do (pause here)

n How could you express the “exists”
quantifier in OCL as a fragment of code in
the style we just looked at?

n How about “select” or “isUnique”?

9

Important Issues
n Contract enforcement code is executed

n It should be side-effect free
n If not, then contracts change behavior!

n Frame conditions
n Explicitly mention what can change
n Anything can change

n Failed contract conditions
n Most approaches will abort the execution
n How can we continue?

Contract Inheritence
n Inheritence in most OO languages

n Sub-type can be used in place of super-type
n Sub-type provides at least the capability of super-

type
n Sub-types weaken the pre-condition

n Require no more than the super-type
n Implicit or of inherited pre-conditions

n Sub-types strengthen the post-condition
n Guarantee at least as much the super-type
n Implicit and of inherited post-conditions
n Invariants are treated the same as post-conditions

10

Tool Support

For dynamic contract enforcement
n Parasoft’s Jtest (Jcontract)

n www.parasoft.com
n ReliableSystems iContract

n Free, but with lots of support tools
n Java dynamic proxies and assertions

n Easy to build your own framework
n See JavaWorld Feb. 2002 issue

n Jass, JMSassert, …

