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Lecture -- Week 14: Design by Contract
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Exploiting Design Information

n Alloy and UML/OCL provide a means for 
expressing properties of designs
n Early design refinement saves time

n Ultimately, we want this effort to impact the 
quality of implementations

n How can we transition design information to 
the code?
n State information (multiplicities, invariants, …)
n Operations info (pre, post, frame conditions, …)
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Design By Contract...

n is a method that emphasizes the precise 
description of interface semantics
n not just syntax, e.g., signatures
n but behavior, e.g., effects of a method call

n It is supported by tools that
n allow semantic properties of the design to be 

propagated to the code
n support various forms of validation of those 

properties

Basic Idea

n Software is viewed as
n a system of communicating components
n all interaction is governed by contracts
n contracts are precise specifications of mutual 

obligation

n Note that contracts are bi-directional
n both parties are obligated by them



3

Specifications are Necessary

n but not sufficient for software quality
n The Law of Excluded Miracles

Without a specification we have no hope of a 
system that works properly

n Content of specification varies
n Lightweight (partial)
n Complete behavioral specification

n Tool support varies
n Commercial/research, Static/dynamic checking

Contracts

n Two parties are involved in a contract
n The supplier performs a task
n The client requests that the task be 

performed
n Each party

n has obligations
n receives some benefits

n Contracts specify those obligations and 
benefits
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Air Travel

Client (Traveler)
n Obligation

n check in 10 minutes 
before boarding

n <3 small carry-ons
n buy ticket

n Benefit
n reach Boston

Supplier (Airline)
n Obligation

n take traveler to Boston

n Benefit
n don’t need to wait for late 

travelers
n don’t need to store 

arbitrary amounts of 
luggage

n money

Contracts

n Specify what should be done
n they are implementation independent

n This same idea can be applied to software 
using the building blocks we’ve learned
n Pre-conditions
n Post-conditions
n Frame-conditions
n Invariants
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Taking a flight
Class Flight {

/**
* @pre time < this.takeoff – 10
* @pre l.number < 3
* @pre p in this.ticketed
* @post result = this.destination
*/

Destination takeFlight(Person p, Luggage l) {…}
}

Specification or Coding Language

n Why not both?
n Refinement methodology

n rather than develop signatures alone
n develop contract specification
n analyze client-supplier consistency
n fill in implementation details
n check that code satisfies contract

n Natural progression from design to code
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Java Example

import java.util.Vector;

public interface ICompany {
public Vector getEmployees();
public Vector getRooms();
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}

Java Example
import java.util.Vector;
public interface ICompany {

public Vector getEmployees();
public Vector getRooms();

/**
* @pre employee != null
* @pre !getEmployees().contains(employee) // do not employ twice
* @pre !employee.hasOffice() // does not own an office somewhere else
* @pre roomsAvailable() // there must be an office left
*
* @post getEmployees().contains(employee) // added to list of employees
* @post getRooms().contains(employee.getOffice()) // assign one of our offices
* @post employee.hasOffice() // office assigned
* @post employee.getOffice().getOwner() == employee // correct office owner?
*/
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}
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Source Specifications

n Pre/post conditions
n Boolean expressions in the host language

n What about all of the expressive power 
we have in, e.g., OCL?
n Balance power against checkability
n Balance abstractness against language 

mapping

n No one right choice
n Different tools take different approaches

Java Example with OCL
import java.util.Vector;
/**
* Each employee gets a single office (uniqueness constraint)
* @invariant forall IEmployee e1 in getEmployees().elements() |
* forall IEmployee e2 in getEmployees().elements() |
* (e1 != e2) implies e1.getOffice() != e2.getOffice() 
*/
public interface ICompany {
public Vector getEmployees();
public Vector getRooms();
public void hire(IEmployee employee);
public void move(IEmployee employee, IRoom newOffice);
public boolean roomsAvailable();

}
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Mapping OCL
n The OCL iterate operation 

n Properties should be independent of order
n So, any order will do

n Variants of iterate can be mapped to fragments 
of code for classes with java.util.Enumerations

@invariant forall C c in o.elements() | P(c)

boolean result = true;
for (Enumeration e = o.elements(); 

e.hasMoreElements() && result; ) {
c = (C)e.nextElement();
result = P(c);

}

For You To Do (pause here)

n How could you express the “exists” 
quantifier in OCL as a fragment of code in 
the style we just looked at?

n How about “select” or “isUnique”?
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Important Issues
n Contract enforcement code is executed

n It should be side-effect free
n If not, then contracts change behavior!

n Frame conditions
n Explicitly mention what can change 
n Anything can change

n Failed contract conditions
n Most approaches will abort the execution
n How can we continue?

Contract Inheritence
n Inheritence in most OO languages

n Sub-type can be used in place of super-type
n Sub-type provides at least the capability of super-

type
n Sub-types weaken the pre-condition

n Require no more than the super-type
n Implicit or of inherited pre-conditions

n Sub-types strengthen the post-condition
n Guarantee at least as much the super-type
n Implicit and of inherited post-conditions
n Invariants are treated the same as post-conditions
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Tool Support

For dynamic contract enforcement
n Parasoft’s Jtest (Jcontract)

n www.parasoft.com
n ReliableSystems iContract

n Free, but with lots of support tools
n Java dynamic proxies and assertions

n Easy to build your own framework
n See JavaWorld Feb. 2002 issue

n Jass, JMSassert, …


