
JDO Tutorial

by Travis Reeder, Thomas Mahler

Table of contents

1 Using the ObJectRelationalBridge JDO API...2

1.1 Introduction... 2

1.2 Running the Tutorial Application..2

2 Using the JDO API in the UseCase Implementations..3

2.1 Obtaining the JDO PersistenceManager Object.. 3

2.2 Retrieving collections..4

2.3 Storing objects... 5

2.4 Updating Objects... 6

2.5 Deleting Objects.. 8

3 Conclusion... 9

Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Using the ObJectRelationalBridge JDO API

1.1. Introduction

This document demonstrates how to use ObjectRelationalBridge and the JDO API in a
simple application scenario. The tutorial application implements a product catalog database
with some basic use cases. The source code for the tutorial application is shipped in the
tutorials-src.jar which can be downloaded here
(http://www.apache.org/dyn/closer.cgi/db/ojb/) . The source for this tutorial is found in the
directory org/apache/ojb/tutorial5.

This document is not meant as a complete introduction to JDO. For more information see:
Sun's JDO site (http://java.sun.com/products/jdo/) .

Note:
OJB does not provide it's own JDO implementation yet. A full JDO implementation is in the scope of the 2.0 release.
For the time being we provide a plugin to the JDO reference implementation called OjbStore. The OjbStore plugin
resides in the package org.apache.ojb.jdori.sql.

1.2. Running the Tutorial Application

To install and run the demo application with the ojb-blank sample project (which is
described in more detail here (../../docu/getting-started.html)) please follow the following
steps:

1. Extract the tutorial-src.jar that you downloaded from here
(http://www.apache.org/dyn/closer.cgi/db/ojb/) into the src/java subdirectory of the
ojb-blank project.
The JDO tutorial source files are contained in the org/apache/ojb/tutorial5
subdirectory, and you can safely erase the subdirectories of the other tutorials.

2. Download the JDO Reference Implementation from Sun's JDO site
(http://java.sun.com/products/jdo/) .
Extract the archiv to a local directory and copy the files:
• jdori.jar
• jdo.jar
into the lib directory of the project.

3. Now you can run the test application with these commands:

ant build enhance-jdori
from the toplevel project directory. The latter of these commands will enhance the jdo
tutorial classes. Note that due to some limitations in the JDO reference implementation,

JDO Tutorial

Page 2
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

http://www.apache.org/dyn/closer.cgi/db/ojb/
http://java.sun.com/products/jdo/
../../docu/getting-started.html
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://java.sun.com/products/jdo/

the ant target will only work for the JDO tutorial, so if you want to create you own JDO
application using the ojb-blank project, you have to adapt the build file accordingly.
To setup the test database you can issue this command

ant setup-db
4. Now you can start the tutorial application by executing

cd build/resources

java org.apache.ojb.tutorial5.Main
from the project toplevel directory.

2. Using the JDO API in the UseCase Implementations

As shown here (../../index.html) OJB supports four different API's. The PersistenceBroker,
the OTM layer, the ODMG implementation, and the JDO implementation.

The PB tutorial (../../docu/tutorials/pb-tutorial.html) implemented the sample application's
use cases with the PersistenceBroker API. This tutorial will show how the same use cases can
be implemented using the JDO API.

You can get more information about the JDO API at JDO javadocs
(http://java.sun.com/products/jdo/javadocs/index.html) .

2.1. Obtaining the JDO PersistenceManager Object

In order to access the functionalities of the JDO API you have to deal with a special facade
object that serves as the main entry point to all JDO operations. This facade is specified by
the Interface javax.jdo.PersistenceManager.

A Vendor of a JDO compliant product must provide a specific implementation of the
javax.jdo.PersistenceManager interface. JDO also specifies that a JDO
implementation must provide a javax.jdo.PersistenceManagerFactory
implementation that is responsible for generating javax.jdo.PersistenceManager
instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB
specific PersistenceManagerFactory object. Ideally this will be the only vendor specific
operation.

In our tutorial application the PersistenceManagerFactory object is obtained in the
constructor of the Application class and reached to the use case implementations for further
usage:

JDO Tutorial

Page 3
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../index.html
../../docu/tutorials/pb-tutorial.html
http://java.sun.com/products/jdo/javadocs/index.html

public Application()
{

factory = null;
manager = null;
try
{

// create OJB specific factory:
factory = new OjbStorePMF();

}
catch (Throwable t)
{

System.out.println("ERROR: " + t.getMessage());
t.printStackTrace();

}
useCases = new Vector();
useCases.add(new UCListAllProducts(factory));
useCases.add(new UCEnterNewProduct(factory));
useCases.add(new UCEditProduct(factory));
useCases.add(new UCDeleteProduct(factory));
useCases.add(new UCQuitApplication(factory));

}

The class org.apache.ojb.jdori.sql.OjbStorePMF is the OJB specific
javax.jdo.PersistenceManagerFactory implementation.

########### TODO: Put information about the .jdo files #############

The PersistenceManagerFactory object is reached to the constructors of the
UseCases. These constructors store it in a protected attribute factory for further usage.

2.2. Retrieving collections

The next thing we need to know is how this Implementation instance integrates into our
persistence operations.

In the use case UCListAllProducts we have to retrieve a collection containing all
product entries from the persistent store. To retrieve a collection containing objects matching
some criteria we can use the JDOQL query language as specified by the JDO spec. In our use
case we want to select all persistent instances of the class Products. In this case the query is
quite simple as it does not need any limiting search criteria.

We use the factory to create a PersistenceManager instance in step one. In the second step we
ask the PersistenceManager to create a query returning all Product instances.

In the third step we perform the query and collect the results in a collection.

In the fourth step we iterate through the collection to print out each product matching our
query.

JDO Tutorial

Page 4
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

public void apply()
{

// 1. get a PersistenceManager instance
PersistenceManager manager = factory.getPersistenceManager();
System.out.println("The list of available products:");

try
{

// clear cache to provoke query against database
PersistenceBrokerFactory.

defaultPersistenceBroker().clearCache();

// 2. start tx and form query
manager.currentTransaction().begin();
Query query = manager.newQuery(Product.class);

// 3. perform query
Collection allProducts = (Collection)query.execute();

// 4. now iterate over the result to print each
// product and finish tx
java.util.Iterator iter = allProducts.iterator();
if (! iter.hasNext())
{

System.out.println("No Product entries found!");
}
while (iter.hasNext())
{

System.out.println(iter.next());
}
manager.currentTransaction().commit();

}
catch (Throwable t)
{

t.printStackTrace();
}
finally
{

manager.close();
}

}

2.3. Storing objects

Now we will have a look at the use case UCEnterNewProduct. It works as follows: first
create a new object, then ask the user for the new product's data (productname, price and
available stock). These data is stored in the new object's attributes. This part is no different
from the PB tutorial (../../docu/tutorials/pb-tutorial.html) implementation. (Steps 1. and 2.)

Now we will store the newly created object in the persistent store by means of the JDO API.
With JDO, all persistence operations must happen within a transaction. So the third step is to
ask the PersistenceManager object for a fresh javax.jdo.Transaction object to work

JDO Tutorial

Page 5
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/pb-tutorial.html

with. The begin() method starts the transaction.

We then have to ask the PersistenceManager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction
are now made persistent. As you will have noticed there is no need to explicitly store objects
as with the PersistenceBroker API. The Transaction object is responsible for tracking which
objects have been modified and to choose the appropriate persistence operation on commit.

public void apply()
{

// 1. this will be our new object
Product newProduct = new Product();
// 2. now read in all relevant information and fill the new object:
System.out.println("please enter a new product");
String in = readLineWithMessage("enter name:");
newProduct.setName(in);
in = readLineWithMessage("enter price:");
newProduct.setPrice(Double.parseDouble(in));
in = readLineWithMessage("enter available stock:");
newProduct.setStock(Integer.parseInt(in));

// 3. create PersistenceManager and start transaction
PersistenceManager manager = factory.getPersistenceManager();

Transaction tx = null;
tx = manager.currentTransaction();
tx.begin();

// 4. mark object as persistent
manager.makePersistent(newProduct);

// 5. commit transaction
tx.commit();

manager.close();
}

2.4. Updating Objects

The UseCase UCEditProduct allows the user to select one of the existing products and to
edit it.

The user enters the products unique id. The object to be edited is looked up by this id. (Steps
1., 2. and 3.) This lookup is necessary as our application does not hold a list of all product
objects.

The product is then edited (Step 4.).

In step five the transaction is commited. All changes to objects touched by the transaction are

JDO Tutorial

Page 6
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

now made persistent. Because we modified an existing object an update operation is
performed against the backend database.

public void apply()
{

PersistenceManager manager = null;

// ask user which object should edited
String in = readLineWithMessage("Edit Product with id:");
int id = Integer.parseInt(in);

Product toBeEdited;
try
{

// 1. start transaction
manager = factory.getPersistenceManager();
manager.currentTransaction().begin();

// We don't have a reference to the selected Product.
// So we have to look it up first,

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query
Collection result = (Collection) query.execute();
toBeEdited = (Product) result.iterator().next();

if (toBeEdited == null)
{

System.out.println("did not find a matching instance...");
manager.currentTransaction().rollback();
return;

}

// 4. edit the existing entry
System.out.println("please edit the product entry");
in =

readLineWithMessage(
"enter name (was " + toBeEdited.getName() + "):");

toBeEdited.setName(in);
in =

readLineWithMessage(
"enter price (was " + toBeEdited.getPrice() + "):");

toBeEdited.setPrice(Double.parseDouble(in));
in =

readLineWithMessage(
"enter available stock (was "

+ toBeEdited.getStock()
+ "):");

toBeEdited.setStock(Integer.parseInt(in));

JDO Tutorial

Page 7
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

// 5. commit changes
manager.currentTransaction().commit();

}
catch (Throwable t)
{

// rollback in case of errors
manager.currentTransaction().rollback();
t.printStackTrace();

}
finally
{

manager.close();
}

}

2.5. Deleting Objects

The UseCase UCDeleteProduct allows the user to select one of the existing products and
to delete it from the persistent storage.

The user enters the products unique id. The object to be deleted is looked up by this id. (Steps
1., 2. and 3.) This lookup is necessary as our application does not hold a list of all product
objects.

In the fourth step we check if a Product matching to the id could be found. If no entry is
found we print a message and quit the work.

If a Product entry was found we delete it in step 5 by calling the PersistenceManager to
delete the persistent object. On transaction commit all changes to objects touched by the
transaction are made persistent. Because we marked the Product entry for deletion, a delete
operation is performed against the backend database.

public void apply()
{

PersistenceManager manager = null;
Transaction tx = null;
String in = readLineWithMessage("Delete Product with id:");
int id = Integer.parseInt(in);

try
{

// 1. start transaction
manager = factory.getPersistenceManager();
tx = manager.currentTransaction();
tx.begin();

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query

JDO Tutorial

Page 8
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

Collection result = (Collection) query.execute();

// 4. if no matching product was found, print a message
if (result.size() == 0)
{

System.out.println("did not find a Product with id=" + id);
tx.rollback();
manager.close();
return;

}
// 5. if a matching product was found, delete it
else
{

Product toBeDeleted = (Product) result.iterator().next();
manager.deletePersistent(toBeDeleted);
tx.commit();
manager.close();

}
}
catch (Throwable t)
{

// rollback in case of errors
//broker.abortTransaction();
tx.rollback();
t.printStackTrace();

}
}

3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system
within a simple application scenario. I hope you found this tutorial helpful. Any comments
are welcome.

JDO Tutorial

Page 9
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

	1 Using the ObJectRelationalBridge JDO API
	1.1 Introduction
	1.2 Running the Tutorial Application

	2 Using the JDO API in the UseCase Implementations
	2.1 Obtaining the JDO PersistenceManager Object
	2.2 Retrieving collections
	2.3 Storing objects
	2.4 Updating Objects
	2.5 Deleting Objects

	3 Conclusion

