CSCI 189 Assignment 5 Problem Set

This assignment provides an opportunity to learn about relations and their applications to database

design, information retrieval, and Web searching.

Summary of Concepts in Section 4.1 and 4.3

The following table will be used again in the discussion below:

OurClass
Name | Class | Home | Calc | Prog | Career Subject Xwords
Chris 2007 | MA no yes computers | cs yes
Evan 2007 | NC hs yes unk cs no
Jarrett | 2008 | MD yes yes computers | cs yes
Jason | 2010 | VA no no pilot aeronautics | yes
Joe 2008 | MA yes | yes banking econ yes
John 2008 | NY yes | yes unk cs yes
Karina | 2007 | NY yes no unk anthro no
Kate 2006 | ME hs no unk english yes
Matt 2009 | MA hs no business unk yes
Nolan | 2008 | CA yes | yes computers | cs yes

Relations

A binary relation p on a set S is a subset of S x .S . A binary relation p on sets S and T is a subset
of S x T. An n-ary relation p on sets S1,59,...,.5, is a subset of S x Sy x ... x S,,. We think of
p itself as a property that all members of the relation share.

E.g., the relation p; = {(0,0),(1,1),(2,4),(3,9),...} describes the set of pairs (z,y) in N x N
which share the property y = x2.

E.g., the relation py = {(chris, cs), (evan, cs), (jarrett, cs), (joe, econ), (john,cs), (nolan,cs)} de-
scribes the set of pairs (z,y) in Names x Subject which share the property that x’s probable
major subject is computer science or economics (i.e., y = c¢s V y = econ).

A relation p is one-to-one if ¥(x,y) € p, x appears only once and y appears only once. For example,
p1 is one-to-one, but py is not. A relation p is one-to-many (or many-to-one) if 3(x,y) € p such
that x (or y) appears somewhere else in p. For example, py is many-to-one, since two different
people have the same favorite subject, but it is not one-to-many.

A relation is many-to-many if it is both one-to many and many-to-one. For example, p3 =
{(2007,NY), (2008, NY'), (2008, M D)} is many-to-many. That is, there are more than one home

states for members of the class of 2008, and there are more than one classes represented by the
same home state (NY).

A relation p on a set S is:

reflezive if Va(z € S — (z,z) € p).
symmetric if VaVy(x,y € S A (x,y) € p — (y,x) € p).
transitive if VeVyVz(z,y,z € S A (x,y),(y,2) € p — (z,2) € p).

antisymmetric if VaVy(z,y € S A (x,y) € p A (y,z) € p — x =y).

A relation that is reflexive, symmetric, and transitive is called an equivalence relation.

For example, suppose S = Names and py = {(z,y) € Names | x and y are in the same graduating class}.
Thus, ps = {(chris, chris), (chris, evan), (chris, karina), (evan, chris), (evan, evan), (evan, karina), .. .}.
This is an equivalence relation, since 1) each person is in the same graduating class as him /herself,

2) if x is in the same class as as y then y must be in the same class as x, and 3) if x is in the same

class as y and y is in the same class as z, then surely x must be in the same class as z.

A partition of S is a collection of nonempty disjoint subsets Sy, S9,...,S, such that S U Se U

.8, = 5. If pis an equivalence relation on S, then [z] denotes the set of all members of S to
which x is related, and is called the equivalence class of x. That is, [z] = {y | y € S A (z,y) € p}.
An equivalence relation p on S defines a partition of S, and conversely.

For example, since py is an equivalence relation, we can find the equivalence class for, say, chris,
as: [chris] = {chris, evan, karina}, since these two are in the same graduating class and nobody
else is. Similarly, the equivalence class [jarrett] = {jarrett, joe, john,nolan}, and so forth.

A partial ordering is a binary relation on a set S that is reflexive, antisymmetric, and transitive.
For example, < is a partial ordering on Z (the integers), since 1) every integer is less than or equal
to itself, 2) if x <y and y < z then z < 2z, and 3) if x <y and y < z then 2 = y. But < is not a
partial ordering on the integers, since it is not reflexive (no integer is less than itself!). Similarly,
C is a partial ordering on a set, while C is not.

A Hasse diagram of a partial ordering is a graphical representation in which each pair (z,y) is
connected by a line and x is placed below y, as shown:

y

Below is a Hasse diagram for the partial ordering pg = {(z,y) | =,y € {1,2,3,5,6,15,30} and x divides y}.

30

To construct such a diagram, we can start with the largest element y in the set and place it at the
top. Then write down, just below y, every element z in the set for which 1) there’s a pair (z,y)
in the relation, and 2) there is no z > x whose pair (z, z) is in the relation. Now connect each
such z with y. Repeat this step again at the next lower level in the diagram, and continue until
all the elements in the set appear exactly once. For example, the above diagram would have been
constructed beginning with 30, and then connecting 6 and 15 to it (but no others, since the rest
divide either 6 or 15 or both).

For a counterexample, consider ps = {(z,y) € Names x Names | x graduates no later than y}.
This is reflexive, since everyone graduates no later than him/herself. It is also transitive, since if x
graduates no later than y and y graduates no later than z, then surely x graduates no later than z.
However, this relation is not a partial ordering, since it is not antisymmetric. That is, the fact that
x graduates no later than y and y graduates no later than x doesn’t force x and y to be the same per-
son. For example, the pair (joe, john) is in ps as is the pair (john, joe), but they are different. Some
of the members of this relation are: {(joe, joe), (john, john), (john, joe), (joe, matt), (joe, jason), ...}

Relational Databases

In the relational database model, a table is a set of n-tuples (rows), and each row is called a tuple.
Each column in the table contains values of a certain attribute, and the number n of attributes
(columns) is th degree of the relation. The table at the beginning of this handout is such a table,
with attributes A; = Name, Ay = Class, etc.

A relational database is a subset of D1 x Dy X ... X D, where each D; is the domain from which
attribute A; takes its values. So a relational database is consistent with the idea of an ”"n-ary
relation” on multiple sets.

The primary key of a database is a (set of) attribute(s) that can be used to uniquely identify each
tuple (row). E.g., the attribute Name is a primary key of our database, since everyone in the class
has a different name.

There are three major operations that can be performed on relational databases D, E, and F:
restrict, project, and join. Here is a definition of each one, with examples.

The restrict operation creates a new relation E from a relation D by selecting only those rows
that meet a certain ”condition,” which is a logic expression on the attributes of D. It is written as:
restrict D where condition giving E

For example, if we wanted to create a new relation “Juniors” from our class (call the whole table
“OurClass”), we would write:

restrict OurClass where Class = 2007 giving Juniors

which would create the following table:

Juniors
Name | Class | Home | Calc | Prog | Career Subject | Xwords
Chris 2007 | MA no yes computers | cs yes
Evan 2007 | NC hs yes unk cs no
Karina | 2007 | NY yes no unk anthro | no

The project operation creates a new relation E from a relation D by including only certain at-
tributes and discarding the rest, and eliminating duplicates. It is written as:

project D over (attributes) giving E

For example, if we wanted to define the relation OurBackgrounds (that is, all the combinations of
programming and calculus backgrounds represented by different members of our class), we would
write:

project OurClass over (Prog, Calc) giving OurBackgrounds

This would yield the following table:

OurBackgrounds

Prog | Calc

no yes

hs yes

yes yes

no no

yes no

hs no

The join operation is useful when there are two or more relations, say D and E that share the same
value for a particular attribute, creating a new relation F. It is written as:

join D and E over (attribute) giving F

For example, suppose our class database had three tables rather than the one shown on the first
page. That is, suppose one table called Roster, contains a list of Name, Class, and Home; one called
Backgrounds contains a list of Name, Calc, Prog, and XWords; and one called Interests contains a
list of Name, Career, and Subject. That is, the information for our class is distributed among the
following three tables rather than one:

Roster Backgrounds

Name | Class | Home Name | Calc | Prog Xwords

Chris | 2007 | MA Chris | no yes yes

Evan 2007 | NC Evan hs yes no

Jarrett | 2008 | MD Jarrett | yes yes yes

Jason | 2010 | VA Jason | no no yes

Joe 2008 | MA Joe yes | yes yes

John 2008 | NY John yes | yes yes

Karina | 2007 | NY Karina | yes no no

Kate 2006 | ME Kate hs no yes

Matt 2009 | MA Matt hs no yes

Nolan | 2008 | CA Nolan | yes | yes yes
Interests

Name | Career Subject

Chris computers | cs

Evan unk cs

Jarrett | computers | cs

Jason | pilot aeronautics

Joe banking econ

John unk cs

Karina | unk anthro

Kate unk english

Matt business unk

Nolan | computers | cs

Now if we want to make a single table listing only the Name and Class of all students in our class
who like crosswords, we would need to combine two different tables to derive the information we
need. This is the purpose of the join operation. To do a join, the two tables would have to share
a common attribute, such as Name in our case, which would be the basis for joining them (Notice
the use of restrict here to select only rows for people who like crosswords).

join Roster and (restrict Backgrounds where XWords = ’yes’) over (Name)

To complete this activity, we need to project that result so that it shows only the Names and
Classes of those who do like crosswords by saying:

project (join Roster and (restrict Backgrounds where XWords = ’yes’) over (Name)) over
(Name, Class) giving LikesXWords

This creates a new relation that looks like this:

LikesXWords

Name | Class
Chris 2007
Jarrett | 2008
Jason | 2010
Joe 2008
John 2008
Kate 2006
Matt 2009
Nolan | 2008

Using SQL to Access Relational Databases

SQL (for “Structured Query Language”) is a programming language that allows people to retrieve
information from relational databases such as this one. Its syntax is a bit awkward, but it allows
various kinds of information to be retrieved. Here is the beginning of an SQL session using the
”QurClass” database described on the first page of this document.

mysql> select * from OurClass;

pomm o o o o Fomm e Fomm +
| Name | Class | Home | Calc | Prog | Career | Subject | Xwords |
Fommmm o e o o Fomm o o Fomm +
| Chris | 2007 | MA | no | yes | computers | cs | yes
| Evan | 2007 | NC | hs | yes | unk | cs | no
| Jarrett | 2008 | MD | yes | yes | computers | cs | yes
| Jason | 2010 | VA | no | no | pilot | aeronautics | yes |
| Joe | 2008 | MA | yes | yes | banking | econ | yes |
| John | 2008 | NY | yes | yes | unk | cs | yes
| Karina | 2007 | NY | yes | no | unk | anthro | no |
| Kate | 2006 | ME | hs | no | unk | english | yes I
| Matt | 2009 | MA | hs | no | business | unk | yes
| Nolan | 2008 | CA | yes | yes | computers | cs | yes
pomm o o e o Fomm oo o Fommmm +

10 rows in set (0.00 sec)

The general form of an SQL statement, where D and E again represent relations (SQL calls them
"tables”), is shown below:

CREATE TABLE E
SELECT attributes FROM D
WHERE condition
AND/OR condition ... ;

Here, the CREATE line is like the ”giving” clause in the restrict, project and join operations
discussed above. Moreover, the attributes in the SELECT line are like the project operation,

and the conditions in the WHERE and AND/OR lines are like the restrict operation.

For example, the new relation Sophomores defined earlier can be created using the following SQL
commands:

mysql> create table Juniors

-> select * from OurClass where Class = 2007;
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: O Warnings: O

mysql> select * from Juniors;

mm Hmmm— e e - Hmm Hmmmm e +
| Name | Class | Home | Calc | Prog | Career | Subject | Xwords |
e Hmm—— o = = mm Hmmmm S +
Chris	2007	MA	no	yes	computers	cs	yes
Evan	2007	NC	hs	yes	unk	cs	no
Karina	2007	NY	yes	no	unk	anthro	no
e +———— o o = e Hmmmm S +

3 rows in set (0.01 sec)

Note here that the asterisk (*) means ”select all columns.” To select particular columns, their
headings are listed in place of the asterisk. For example, the relation QurBackgrounds can be
generated by selecting the columns Calc and Prog in the following way:

mysql> create table OurBackgrounds

-> select distinct Prog, Calc from OurClass;
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: O Warnings: O

mysql> select * from OurBackgrounds;

e e +
| Prog | Calc |
e e +
no	yes
hs	yes
yes	yes
no	no
yes	no
hs	no
e e +

6 rows in set (0.01 sec)

The word distinct here specifies that duplicate pairs, like two instances of (yes, no), not appear
in the table.

Finally, the new relation LikesX Words can be generated using the SQL natural join command,
which looks like this:

mysql> create table LikesXwords
-> select Roster.Name, Roster.class from Roster natural join Backgrounds

-> where Xwords = ’yes’;
e e +
| Name | class |
e e +
Chris	2007
Jarrett	2008
Jason	2010
Joe	2008
John	2008
Kate	2006
Matt	2009
Nolan	2008
fmm e +

8 rows in set (0.00 sec)

If you would like to experiment with SQL, you can download and install it on your computer. The
free version used here is called mysql and it can be obtained from the Web site http://www.mysql. com/

The file from which the above examples are drawn is called OurClass.sql and it can be directly
downloaded from this Web location.

Problems to be handed in

You are welcome to work in groups of 2 or 3 to complete this assignment. Each group member
should contribute a fair share of the work, and the group should turn in one set of answers (listing
the names of group members at the top).

Section 4.1 (p 262) Exercises 2ac, 6ac, 8ac, 9ace, 16bd, 23a, 25¢, 36, 37

Section 4.3 (p 287) Exercises 5, 7, 10, 13, 16, 18 (use only relational algebra and SQL for 16 and
18, but not relational calculus), 19.

Extra credit (optional) Do exercise 30 on page 266.

