CSCI 189 Assignment 7 Problem Set

This assignment provides an opportunity to learn about recurrence relations, recursive functions,
and their implementation in Haskell.

Summary of Concepts in Section 2.4 and Haskell

Defining functions in Haskell is a discipline that requires mastery of recursion and recurrence
relations. A ”recurrence relation” is a style for defining functions that uses self-reference in order
to achieve generality. Recurrence relations occur when we examine the following artifacts:

—_

. Sequences (lists) and sets

2. Functions that transform sequences and sets
3. Solving recurrence relations
4

. Recursion and proofs by induction

We illustrate each of these in the discussion below, along with an interesting application in com-
puting disk read/write time.

Recursively defined sequences and sets

A sequence is a list enumerated in some order, like 1,2,4,8,16,.... Each member of a sequence
sequence can be defined using a recurrence relation, which is a function describing 1) how the first
element can be computed and 2) how the nth element in the sequence can be computed from a
previous one. For example, each member of the above sequence can be defined by the following
recurrence relation.

=1
f(n)=2f(n—1) forn>1

Of course, the members of this sequence can be more simply defined by the function f(n) =
27~1 But many other sequences are more easily defined using a recurrence relation. Consider,
for example, the Fibonacci sequence 1,1, 2,3,5,8,13, ... is one such sequence, and its members are
usually defined by the following recurrence relation:

fibo(1) =1
fibo(2) =1
fibo(n) = fibo(n — 2) + fibo(n — 1) for n > 2

Sets can also be conveniently enumerated using recurrence relations. Consider the set B* of all
strings over the alphabet B = {0, 1}, which are the binary numbers. That is:

B* ={\,0,1,00,01,01, 11,000,001, 010,011, 100, 101, 110, ...}
Each member of this set can be defined by the following recurrence relation:

Ae B*
Bbe B* ifbe {0,1} and B € B*

Notice that all three of these examples follow the same pattern: a ”base step” and a ”recursive
step.” The base step defines the starting point of the sequence, and the recursive step defines how
to derive the next element in the sequence, given the previous one. Thus, in recurrence relations
we have something akin to the proof by induction strategy that we learned earlier in the semester.
We will see that induction and recurrence relations are strongly connected through the idea of a
"recursive function.”

Recursive functions

It is a short step from a recurrence relation to a so-called "recursive function.” A recursive function
is one that mirrors the definition of a recurrence relation, such as f or fibo in the above section. The
nice thing about recursive functions is that we can write them directly in Haskell, and so they can
be called to perform computational tasks for us. Here are the Haskell renditions of the relations f,
fibo, and B*:

>fn

> | n<1 = error "Improper input"

> | n== =1

> | otherwise = 2*f(n-1)

> fibo n

> | n<1 = error "Improper input"

> | n<=2 =1

> | otherwise = fibo(n-2) + fibo(n-1)

> bStar n

> | n <1 = error "Improper input'

> | n==1 = "

> | n == 2 = IIO"

> | n == 3 = "1

> | n ‘mod‘ 2 == 0 = bStar (n ‘div‘ 2) ++ "O"
> | otherwise = bStar (n ‘div‘ 2) ++ "1

The first two of these are very straightforward. The third is a bit tricky, and it depends on an
understanding of how each string of 0’s and 1’s can be generated from a predecessor in the sequence
that has one fewer bits. It turns out that that predecessor is at position |n/2] in the sequence. For
example, to generate the strings ”110” and ”111”, which are at positions 14 and 15 in the sequence,

we need to append a ”0” and a ”1” respectively to the string ”"11” which is at position 7 in the
sequence.

To visualize how these functions work, we can generate their respective sequences by mapping
them over the positive integers {1, 2, ... }. This is easily done by making the following calls to
the Haskell "map” function, which builds a list by applying the function of interest to each of the
positive integers:

Asst7> map £ [1,2..]
Asst7> map fibo [1,2..]
Asst7> map bStar [1,2..]

Since each of these function applications will (potentially) compute an infinite list of results, you
will want to interrupt that computation after you see the first few elements of the list appear.

Recursive functions can also be designed to perform computations other than those which generate
sequences. For example, the following function finds the index of the maximum element in a (finite)
list of n elements.

where x = maximum alList

> maxIndex aList

> | n <1 = error "Improper input"

> | n == =1

> | otherwise = 1 + length (takeWhile (/= x) alist)
>

>

n = length alist

This function can be useful in sorting a list, as discussed on page 129 of your text and illustrated
in the laboratory tutorial for this assignment.

Another useful function that can be defined recursively is one that searches a list to see if a particular
value is there or not. This is discussed on page 130 of your text, and is implemented in Haskell as
follows:

binarySearch alList i j x
| i > j =0
| x == aList!!(k-1) =k

| x < aList!!(k-1)
| otherwise
where k = (i+j) ‘div‘

binarySearch alist i (k-1) x
binarySearch alist (k+1) j x

>
>
>
>
>
>

N

To understand the dynamics of this function, review the discussion in your text and call it a few
times using the laboratory tutorial.

Solving recurrence relations

To solve a recurrence relation, we want to find a ”closed form” expression for it. For instance, the
closed form expression for the recurrence relation:

f)=1
fn)=2f(n—1) forn>1

is, in fact, f(n) = 2"~'. How can we discover this and prove that it is correct?
One technique for discovering a closed form for a recurrence relation is to try some initial cases,

guess the closed form, and then prove that your guess is correct. This technique is discussed on
page 121 of your text. For instance, the above relation yields the following initial cases:

n_ f(n)

1 1

2 2

3 4

4 8=23
5 16=24

So now we look at the second column and guess that the 6th entry will be 32 = 2°, suggesting that
the kth entry will likely be 2¥~1. Finally, we need to prove (by induction) that our guess will work
for all cases, not just these initial ones. Our induction proof must show:

The base case (i.e., f(1) =1, by definition of f), and

The induction step: assume the hypothesis that, for some k, f(k) = 2*~'. Then for k + 1:
f(k+1) =2x f(k) by definition of f
=2 x 2¥"1 by our hypothesis

This completes the proof.

A second technique for discovering a closed form for a recurrence relation is by using the summation
formula below. That is, all linear first order recurrence relations have the form S(n) = ¢S(n—1) +
g(n). This can be solved by finding ¢ and g(n) in the following expression:

S(n) =c"1S(1) + " 2g(2) +...+cg(n—1)+g(n)
= "8 + 3, (i)

For example, consider again the sequence defined by:

f)y=1
fn)=2f(n—1) forn>1

and let g(n) = 0 and ¢ = 2. Then f(n) =2""(1) + >, 0 = 2"~1. The trick here is to find ¢ and
g!

There’s a nice example in your book on page 137 for computing the average read time for data on
a disk. It uses this second method to solve a recurrence relation that expresses the average read
time for a disk with n tracks.

Recursion and proofs by induction

Recursive Haskell functions can be used in inductive proofs about the properties of such functions.
Consider the following two Haskell functions, one of which computes the length of a list, and
the other concatenates (joins) two lists into one. Because both of these are predefined in Haskell
(they’re named length and ++), we redefine them here with slightly different names so we can
illustrate some inductive proofs of their properties. the numbers on the right will be used in our
proofs about the properties of these functions.

> len [] =0 -- len.1 (base case)
> len (x:xs) = 1 + (length xs) -- len.2 (recursive case)
> cat [] ys = ys -- cat.1l (base case)
> cat (x:xs) ys = x : (cat xs ys) -- cat.2 (recursive case)

Both of these are recursive functions, depending on the length of the list passed as an argument.
The base case defines the function for an empty list (e.g., the length of an empty list is 0), and the
recursive step shows how to compute the function based on a list slightly smaller than the current
list. For example,

len [1,3,4,7]
=1 + len [3,4,7]
=1+ (1 + len [4,7])
(1 + (1 + 1len [7]))
1+ @+ @+ 1len [N
1+ @+ 1+0))

N e
+ + +

The first four calls use the second line of the textttlen function. Here are two inductive proofs:
1) that cat (xs cat (ys zs)) = cat (cat xs ys) zs), and 2) that len (cat xs ys) = len
xs + len ys. Notice in each of these proofs that the base case in the proof uses the base case
in the recursive definition, and that the induction step in the proof uses the recursive step in
the definition. (This method of proof about properties of lists and other data structures is called
”structural induction.”)

1) Proof that cat (xs cat (ys zs))
Base case: cat ([] cat ys zs) = cat ys zs by cat.1

= cat (cat xs ys) zs):

cat (cat [] ys) zs by cat.1

Inductive step hypothesis: that cat xs (cat ys zs) = cat (cat xs ys) zs for some list xs.
Then for a list x:xs one element longer, we have:
cat x:xs (cat ys zs) = x:

2) Proof that len (cat xs ys)

Base case: len (cat [] ys)

Inductive step hypothesis:

X

cat
cat

cat (xs (cat ys zs)) by cat.2
(cat (cat xs ys) zs) by hypothesis
(x:(cat xs ys) zs) by cat.2
(cat x:xs ys) zs) by cat.2

len xs + len ys:

len ys by cat.1
0 + len ys by arithmetic
len [] + len ys by len.1

len (cat xs ys) = len xs + len ys for some list xs.
Then for a list x:xs one element longer, we have:

len (cat x:xs ys) = len x: (cat xs ys) by cat.2
=1 + len (cat xs ys) by len.2
=1+ len xs + len ys by hypothesis
= len x:xs + len ys by len.2

Problems to be handed in

Section 2.4 (p 139) Exercises 3, 6, 8, 18, 25, 37, 41, 44, 47 (in Haskell), 51, 52a (in Haskell), 59 (in
Haskell), 80, 83, 86 (give the recurrence relation, write a Haskell function, and solve it with
a call to that function).

”In Haskell” means write a Haskell function. E.g., Exercise 52b in Haskell would be:

minimum2 (x:xs)

>
> I
> |
> I
>

xs == []
X <=y
otherwise

where y = minimum2

X
X

y
Xs

To test this function, we would write something like:

Asst7> minimum2 [3,2,4,1,7,6]

which would give the answer 1, since:

minimum?2

[3,2,4,1,7,6]

minimum2 [2,4,1,7,6]
minimum2 [4,1,7,6]
minimum2 [1,7,6]

1

(the "otherwise" part of the definition)
("otherwise" again, with y = minimum2 [1,7,6])
("otherwise" again, with y = minimum2 [7,6])

(the "x <= y" part of the definition, since 1 <= 6)

