CSCI 189 Assignment 3 Problem Set

This assignment povides an opportunity to learn about some important alternative proof tech-
niques beyond direct proof. Especially important in computer science applications are “proof by
contradiction” and “proof by induction.”

Summary of Concepts in Section 2.1-2.2

Direct Proof

The proof techniques we have studied so far are called “direct proof.” That is, you begin with an
argument of the form Py A Po A ... A\ P, — @, assume that its hypotheses Py, P, ..., Pyare true,
and try to find a direct path to the conclusion @.

Another direct proof technique is “proof by exhaustion” - that is, you try out the argument under all
possible values for the variables. This isn’t usually a practical technique (see p 86 for a discussion).

Another variation of direct proof is a more informal one, in which some intermediate steps can
be skipped because they are too trivial to write down (see p 87-88 for a discussion of this idea).
Informal proofs are usually preferred in mathematics and computer science problem solving.

The following proof methods are more informal than those we have seen in Assignments 1 and 2.

Proof by Contraposition

To prove an argument P — ) by contraposition, you try to prove the argument @’ — P’ instead.
We an do this because these two expressions are logically equivalent.

For example, suppose we want to prove the argument “If 27 different passwords are issued to the
26 students in this class, then someone will have two passwords.”

Let P = “27 different paswords were issued to the 26 students in the class.”
Let ) = “someone has two passwords.”
Then we can prove P — @ by assuming @’ and proving that this leads to the validity of P’.

Let’s assume, therefore, that “nobody has two passwords.” Then the total number of passwords
issued can not be greater than 26 (the number of students in the class). In particular, that
number cannot be 27, which is equivalent to P’.



Proof by Contradiction

This method is similar to proof by contraposition, but is not completely the same. That is, to prove
the validity of the argument P — @, we assume the contrary (P — Q)" (or, equivalently P A Q')
and then we show that this assumption leads to a contradiction. Recall that a contradiction is a
proposition that is false in all circumstances.

To solve the above problem by contradiction, we would assume that “27 different passwords were
issued to 26 students and nobody has 2 passwords.” This, of course, is self-contradictory.

For another example, suppose we want to prove by contradiction that if a list of integers [l1, l2, . . . , ;)]
is ordered, then Vi € {1,...,n — 1} : [; <l; + 1. Let’s assume the contrary, that the list of integers
[l1,12,...,1,) is ordered and Ji € {1,...,m — 1} : [; > l; + 1. This is self-contradictory, since there
can be no such list with both these properties.

A third example is discussed in your text (p 90), which proves by contradiction that the product
of two odd integers is an odd integer. Assuming the contrary, suppose that there were two odd
integers z and y whose product zy is even. That is, suppose that:

Im(z =2m+ 1) and In(y = 2n + 1), but that Ik(zy = 2k).
With these assumptions, we must find a value for k that satisfies 2k = (2m + 1)(2n + 1).
But (2m +1)(2n + 1) = 2(2mn + m + n) + 1, which is odd.

Thus our assumption leads to the contradiction that there is a number which is both even and odd.

Proof by Induction

This method of proof is very important in computer science, and we shall return to it often through-
out the semester. To prove an argument of the form ¥YnP(n), the domain of n must be countable,
like the integers, or lists of integers, and so forth. The strategy is to construct the proof in two
steps:

1. Prove P(1). This is called the basis step.

2. Assuming that P(k) is true for an arbitrary k£ in the domain of n, prove P(k + 1). That
is, you have proved that Vk(P(k) — P(k + 1)). This is called the induction step. and the
assumption P(k) is called the induction hypothesis.

Here is an example. Suppose we want to prove by induction that the sum of the first n odd integers
is n2. That is, we want to show that 1+ 34 ...+ (2n — 1) = n.

1. The basis step is easily shown, since 1 = 12



2. For the induction step, assume as our induction hypothesis that 1 +3 4 ...+ (2k — 1) = k2.
Now we need to prove that 1+3+...+(2(k+1)—1) = (k+1)2. But 1+3+...+(2(k+1)—1) =
14+3+...+(2k—1)+ (2k+1) = k2 +2k+1 = (k+1)2, which completes the induction step.

Here is another example. Suppose you want to prove by induction that the number of distinct sides
in a row of n adjacent squares is 3n + 1. Here, for example, is a row of 4 adjacent squares, having
13 adjacent sides:

L]

1. The basis step is easily shown, since 1 square has 3 x 1+ 1 = 4 sides (count ’em).

2. For the induction step, assume as our induction hypothesis that k squares have 3k + 1 sides.
Now we need to prove that this leads to the conclusion that k + 1 squares have 3(k+ 1) + 1
sides. But to construct a k 4 1-square row, you simply add 3 sides to the k-square row. This
leads to the conclusion that the number of sides in a k+1-square row is 3k+1+3 = 3(k+1)+1,
which completes the induction step.

Problems to be handed in

You are welcome to work in groups of 2 or 3 to complete this assignment. Each group member
should contribute a fair share of the work, and the group should turn in one set of answers (listing
the names of group members at the top).

Section 2.1 (p 92) Exercises 3ab, 6, 12, 17, 39, 44, 50.
Section 2.2 (p 105) Exercises 2, 8, 25bc, 30, 35, 50, 60, 64b, 68, 70, 71.

Extra credit (optional - some questions to ponder on a cold night when you have nothing better
to do). Prove or disprove any of the following arguments:

1. Prove by induction that an n x n grid of adjacent squares has 2n(n + 1) sides. For
example, a 3 x 3 grid has 2 x 3 x 4 = 24 sides, as shown below:

2. Monkey language consists only of phrases like “abba dabba” and “abba dabba dabba
dabba”. That is, all the phrases in the language are fully defined by the following two
rules:

(a) “abba” is a phrase in the language.
(b) any phrasefollowed by “dabba” is also a phrase in the language.



Prove by induction that every phrase in monkey language is a palindrome. A “palin-
drome” is a phrase that is spelled the same way backwards and forwards, ignoring inter-
mediate spaces. Here are some more examples of palindromes (ignoring the punctuation
marks and capital letters):

May a moody baby doom a yam.
level

Hannah

racecar

civic

Rise to vote, sir!

Are we not drawn onward, we few, drawn onward to new era?
No lemons, no melon.

Able was I ere I saw Elba
detartrated

aibohphobia

Too bad, I hid a boot.

Was it a bar or a bat I saw?
Party boobytrap

Trapeze part

Yreka Bakery

A man, a plan, a canal Panama

Do you know any others?



