How (not?) to grade a true-or-false exam; or, Is teaching different than training a machine learning model?

Thomas Pietraho



Q1: $\sin' 2x = 2\cos 2x$

Q1: $\sin' 2x = 2 \cos 2x$

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

TRUE

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

TRUE

TRUE

 $\ensuremath{\mathsf{Q3:}}$ The king of diamonds has a mustache

Q1: $\sin' 2x = 2\cos 2x$ TRUE

Q2: $\arctan' x = \frac{1}{1+x^2}$

Q3: The king of diamonds has a mustache FALSE?

Q1: $\sin' 2x = 2\cos 2x$ TRUE

Q2: $\arctan' x = \frac{1}{1+x^2}$

Q3: The king of diamonds has a mustache FALSE?

Question: Is there a better way? Partial credit? Answer with $p \in [0,1]$?

Q1: $\sin' 2x = 2\cos 2x$ TRUE

Q2: $\arctan' x = \frac{1}{1+x^2}$

Q3: The king of diamonds has a mustache FALSE?

Question: Is there a better way? Partial credit? Answer with $p \in [0,1]$?

Source: Terry Tao's blog

Paul Erdös and Terry Tao.

Q1: $\sin' 2x = 2\cos 2x$

Q1: $\sin' 2x = 2\cos 2x$

Q1: $\sin' 2x = 2\cos 2x$

TRUE: 90%

Q1:
$$\sin' 2x = 2\cos 2x$$

Q2:
$$\arctan' x = \frac{1}{1+x^2}$$

TRUE: 90%

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

TRUE: 90%

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

TRUE: 90%

TRUE : 70%

Q1: $\sin' 2x = 2\cos 2x$

Q2: $\arctan' x = \frac{1}{1+x^2}$

Q3: The king of diamonds has a mustache

TRUE: 90%

TRUE: 70%

Q1: $\sin' 2x = 2\cos 2x$ TRUE: 90%

Q2: $\arctan' x = \frac{1}{1+x^2}$ TRUE : 70%

Q3: The king of diamonds has a mustache FALSE

Q1: $\sin' 2x = 2 \cos 2x$ TRUE: 90%

Q2: $\arctan' x = \frac{1}{1+x^2}$ TRUE : 70%

Q3: The king of diamonds has a mustache FALSE: 55%

Q1: $\sin' 2x = 2 \cos 2x$ TRUE: 90%

Q2: $\arctan' x = \frac{1}{1+x^2}$ TRUE : 70%

Q3: The king of diamonds has a mustache FALSE: 55%

Assumption: There is some process by which a exam taker can determine their certainty $p \in [0,1]$ when answering such questions.

Q1: $\sin' 2x = 2\cos 2x$ TRUE: 90%

Q2: $\arctan' x = \frac{1}{1+x^2}$ TRUE : 70%

Q3: The king of diamonds has a mustache FALSE: 55%

Assumption: There is some process by which a exam taker can determine their certainty $p \in [0,1]$ when answering such questions.

Question: How should a certainty-based true-or-false exam be graded?

Exam taker believes statement is

- TRUE with confidence 60%
- FALSE with confidence 40%

Writes down TRUE: 60%.

Exam taker believes statement is

- TRUE with confidence 60%
- FALSE with confidence 40%

Writes down TRUE: 60%.

Question: How should this be scored if it is correct? Incorrect?

Exam taker believes statement is

- TRUE with confidence 60%
- FALSE with confidence 40%

Writes down TRUE: 60%.

Question: How should this be scored if it is correct? Incorrect?

Let p be the confidence exam taker has in the correct answer. Score by assigning S(p) points.

- $S:[0,1] \rightarrow \mathbb{R}$
- S increases with p
- Anything else?

Exam taker believes statement is

- TRUE with confidence 60%
- FALSE with confidence 40%

Writes down TRUE: 60%.

Question: How should this be scored if it is correct? Incorrect?

Let p be the confidence exam taker has in the correct answer. Score by assigning S(p) points.

- $S: [0,1] \to \mathbb{R}$
- S increases with p
- Anything else?

Q1: $\sin' 2x = 2\cos 2x$ TRUE: 90% **Q2:** $\arctan' x = \frac{1}{1+x^2}$ TRUE: 70%

Both answers are correct. Total score: S(90%) + S(70%)

Total confidence: 63%

Exam taker believes statement is

- TRUE with confidence 60%
- FALSE with confidence 40%

Writes down TRUE: 60%.

Question: How should this be scored if it is correct? Incorrect?

Let p be the confidence exam taker has in the correct answer. Score by assigning S(p) points.

- $S:[0,1] \rightarrow \mathbb{R}$
- S increases with p
- Anything else?

Q1: $\sin' 2x = 2 \cos 2x$ TRUE: 90% **Q2:** $\arctan' x = \frac{1}{1+x^2}$ TRUE: 70%

Both answers are correct. Total score: S(90%) + S(70%)

Total confidence: 63%

Definition: We will call a scoring function *S* is **reasonable** if

- 1. $S:[0,1] \rightarrow \mathbb{R}$
- 2. S increases with p
- 3. S(pq) = S(p) + S(q)

Goal: Find all reasonable scoring functions.

$$f(x+y)=f(x)+f(y).$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$

$$f(3) = f(1+1) = f(1) + f(1) = c \cdot 3$$

 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{1}{a})$?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{2}{2})$?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{a})$?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$
 $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

$$f(3)=c\cdot 3$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

$$f(3.1) = c \cdot 3.1$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

$$f(3.14) = c \cdot 3.14$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

Irrational numbers?

 $f(3.141) = c \cdot 3.141$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

$$f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

Irrational numbers?

 $f(3.1415) = c \cdot 3.1415$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$

$$f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$$

 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

$$f(n) = c \cdot n$$
 for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

$$f(\pi)=c\cdot\pi$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

Irrational numbers?

$$f(\pi) = c \cdot \pi$$

Theorem

Yes, but if f is continuous.

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

 $f(n) = c \cdot n$ for n a natural number

$$\begin{array}{ll} f(\frac{1}{2})? \ f(\frac{1}{2}+\frac{1}{2})=f(1)=c \ \text{so} \ f(\frac{1}{2})=\frac{c}{2} \\ f(\frac{p}{q})? \ f(\frac{p}{q})=c \cdot \frac{p}{q} \ \text{for positive rationals} \end{array}$$

Irrational numbers?

$$f(\pi) = c \cdot \pi$$

Theorem

Yes, but if f is continuous.

Negative numbers?

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$
 $f(\frac{p}{q})$? $f(\frac{p}{q}) = c \cdot \frac{p}{q}$ for positive rationals

Irrational numbers?

$$f(\pi) = c \cdot \pi$$

Theorem

Yes, but if f is continuous.

Negative numbers?

$$f(x-x) = f(x) + f(-x)$$

$$f(x+y)=f(x)+f(y).$$

$$f(x) = x$$
 works! Any others?

Let's be methodical and work from the ground up.

$$f(0+0) = f(0) + f(0)$$
 so $f(0) = 0$
 $f(1+0) = f(1) + f(0)$ let $f(1) = c$
 $f(2) = f(1+1) = f(1) + f(1) = c \cdot 2$
 $f(3) = f(2+1) = f(2) + f(1) = c \cdot 3$

 $f(n) = c \cdot n$ for n a natural number

$$f(\frac{1}{2})$$
? $f(\frac{1}{2} + \frac{1}{2}) = f(1) = c$ so $f(\frac{1}{2}) = \frac{c}{2}$ $f(\frac{\rho}{a})$? $f(\frac{\rho}{a}) = c \cdot \frac{\rho}{a}$ for positive rationals

Irrational numbers?

$$f(\pi) = c \cdot \pi$$

Theorem

Yes, but if f is continuous.

Theorem

If f is continuous and f(x + y) = f(x) + f(y), then $f(x) = c \cdot x$.

$$S(x \cdot y) = S(x) + S(y).$$

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way.

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way.

Let $x = e^a$ and $y = e^b$. Then:

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way. Let $x=e^a$ and $y=e^b$. Then:

$$S(e^{a} \cdot e^{b}) = S(e^{a}) + S(e^{b})$$

 $S(e^{a+b}) = S(e^{a}) + S(e^{b})$
 $f(a+b) = f(a) + f(b)$

where $f(a) = S(e^a)$.

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way. Let $x=e^a$ and $y=e^b$. Then:

$$S(e^{a} \cdot e^{b}) = S(e^{a}) + S(e^{b})$$

 $S(e^{a+b}) = S(e^{a}) + S(e^{b})$
 $f(a+b) = f(a) + f(b)$

where $f(a) = S(e^a)$. But we know $f(a) = c \cdot a = S(e^a)$.

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way.

Let
$$x = e^a$$
 and $y = e^b$. Then:

$$S(e^{a} \cdot e^{b}) = S(e^{a}) + S(e^{b})$$

 $S(e^{a+b}) = S(e^{a}) + S(e^{b})$
 $f(a+b) = f(a) + f(b)$

where $f(a) = S(e^a)$. But we know $f(a) = c \cdot a = S(e^a)$. Since $\log a = x$,

$$S(x \cdot y) = S(x) + S(y).$$

Could try similar approach. But there is a better way.

Let $x = e^a$ and $y = e^b$. Then:

$$S(e^{a} \cdot e^{b}) = S(e^{a}) + S(e^{b})$$

 $S(e^{a+b}) = S(e^{a}) + S(e^{b})$
 $f(a+b) = f(a) + f(b)$

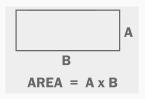
where $f(a) = S(e^a)$. But we know $f(a) = c \cdot a = S(e^a)$. Since $\log a = x$,

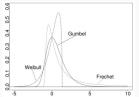
Theorem

If S is continuous and satisfies $S(x \cdot y) = S(x) + S(y)$, then

$$S(x) = c \cdot \log x.$$

Aside: Cauchy functional equations





Notion of area Are there other ways area could be defined? Is the way we are asked to compute area a historical artifact? Work on this question requires you to find functions f(x + y) = f(x) + f(y). Image from Archtoobox.com.

Extreme value distributions Estimate the cost the repair damages caused by a 100-year flood. Work on this question eventually requires you to find functions satisfying $f(x \cdot y) = f(x) + f(y)$. Image by Gennady Samorodnitsky.

Benoit Mandelbrot Known for his work on fractals, Mandelbrot first noticed that equity returns have "power-law" and not "normal" tails. He studied functions of the form $f(x \cdot y) = f(x) \cdot f(y)$. Image from from Tablet Magazine

Solution and examples

Proposal: Let's use $S(p) = \log p$ as the scoring function.

Solution and examples

Proposal: Let's use $S(p) = \log p$ as the scoring function.

- 1. S(p) is increasing!
- 2. S(100%) = 0. Hmmm, but ok.
- 3. S(pq) = S(p) + S(q)

Scores			
р	correct	incorrect	
50%	-0.30	-0.30	
60%	-0.22	-0.40	
70%	-0.15	-0.52	
80%	-0.10	-0.70	
90%	-0.04	-1.00	
100%	0.00	$-\infty$	

Solution and examples

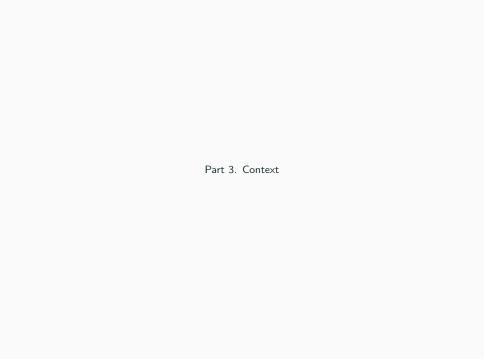
Proposal: Let's use $S(p) = \log p$ as the scoring function.

- 1. S(p) is increasing!
- 2. S(100%) = 0. Hmmm, but ok.

3.
$$S(pq) = S(p) + S(q)$$

Scores		
р	correct	incorrect
50%	-0.30	-0.30
60%	-0.22	-0.40
70%	-0.15	-0.52
80%	-0.10	-0.70
90%	-0.04	-1.00
100%	0.00	$-\infty$

Question: Should I use this scoring method on an exam in one of my courses?



Courtesy of Shannon family.

Question: Suppose we observe:

0000100001100000101001000010000100101000

How surprised should be if the next digit is 1? And how surprising is this entire string of 0s and 1s?

Courtesy of Shannon family.

Question: Suppose we observe:

00001000011000001010010000100000100101000

How surprised should be if the next digit is 1? And how surprising is this entire string of 0s and 1s?

Surprise depends on the proportion p of 1s.

Courtesy of Shannon family.

Question: Suppose we observe:

00001000011000001010010000100000100101000

How surprised should be if the next digit is 1? And how surprising is this entire string of 0s and 1s?

Surprise depends on the proportion p of 1s.

Definition: We will call S a surprise function if

- 1. $S:[0,1] \rightarrow \mathbb{R}$
- 2. S decreases with p
- 3. S(pq) = S(p) + S(q)

Courtesy of Shannon family.

Question: Suppose we observe:

00001000011000001010010000100000100101000

How surprised should be if the next digit is 1? And how surprising is this entire string of 0s and 1s?

Surprise depends on the proportion p of 1s.

Definition: We will call S a surprise function if

- 1. $S: [0,1] \to \mathbb{R}$
- 2. S decreases with p
- 3. S(pq) = S(p) + S(q)

For marketing purposes, Shannon actually called S the **information function** and the field of Information Theory was born.

Classifiers and machine learning

Binary classification problem: Does an object belong to a given class?

Example: Is this digit a 7?

Machine learning pipeline:

- 1. Ask a model, say a neural network, to make a prediction. Require $p \in [0, 1]$.
- 2. Assign a score to that prediction
- 3. Adjust the model via some process that improves the score

Binary cross-entropy: The score, or "loss" function often used:

$$H(p) = \begin{cases} -\log p & \text{if TRUE} \\ -\log(1-p) & \text{if FALSE} \end{cases}$$

Scoring rules and decision theory

The broader context for all of this is known as decision theory.

weatherunderground.com

Canonical problem: Probabilistic forecasting is in meteorology. What does an 86% chance of snow mean? Is this calibrated? If not, is there an appropriate bonus system to incentivize the meteorologist?

If you've studied measure theory, the Wikipedia article provides a good introduction.

T.Tao's approach

Criterion: If a grading scheme is designed badly, a student may end up overstating or understating their confidence in an answer in order to optimise the (expected) grade: the optimal level of confidence q for a student to report on a question may differ from that student's subjective confidence p.

T.Tao's approach

Criterion: If a grading scheme is designed badly, a student may end up overstating or understating their confidence in an answer in order to optimise the (expected) grade: the optimal level of confidence q for a student to report on a question may differ from that student's subjective confidence p.

Expected score:

$$pS(q) + (1-p)S(1-q)$$

should me maximized when p = q. That is:

$$pS'(q) - (1-p)S'(1-q) = 0$$

when p = q. Solutions look like $S(p) = C \cdot \log p + D$.

Connections: Cauchy functional equation

Information theory
Extreme value theory
Backtest overfitting
Black swan events
Machine learning
Axiom of choice
Geometry
Pedagogy?????

