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The Link between Brain Learning, Attention,
and Consciousness

Stephen Grossberg

Department of Cognitive and Neural Systems and Center for Adaptive Systems, Boston University

The processes whereby our brains continue to learn about a changing world in a stable
fashion throughout life are proposed to lead to conscious experiences. These processes
include the learning of top-down expectations, the matching of these expectations against
bottom-up data, the focusing of attention upon the expected clusters of information, and
the development of resonant states between bottom-up and top-down processes as they
reach an attentive consensus between what is expected and what is there in the outside
world. It is suggested that al conscious states in the brain are resonant states and that
these resonant states trigger learning of sensory and cognitive representations. The models
which summarize these concepts are therefore called Adaptive Resonance Theory, or ART,
models. Psychophysical and neurobiological data in support of ART are presented from
early vision, visual object recognition, auditory streaming, variable-rate speech perception,
somatosensory perception, and cognitive—emotional interactions, among others. It is noted
that ART mechanisms seem to be operative at al levels of the visual system, and it is
proposed how these mechanisms are realized by known laminar circuits of visual cortex.
It is predicted that the same circuit realization of ART mechanisms will be found in the
laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized
concerning how some visual percepts may be visibly, or modally, perceived, whereas amo-
dal percepts may be consciously recognized even though they are perceptualy invisible.
It is also suggested that sensory and cognitive processing in the What processing stream
of the brain obey top-down matching and learning laws that are often complementary to
those used for spatial and motor processing in the brain’s Where processing stream. This
enables our sensory and cognitive representations to maintain their stability as we learn
more about the world, while allowing spatial and motor representations to forget learned
maps and gains that are no longer appropriate as our bodies develop and grow from in-
fanthood to adulthood. Procedural memories are proposed to be unconscious because the
inhibitory matching process that supports these spatial and motor processes cannot lead
to resonance. O 1999 Academic Press
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HOW DO WE CONTINUE TO LEARN THROUGHOUT LIFE?

We experience theworld asawhole. Although myriad signalsrelentlessly bombard
our senses, we somehow integrate them into unified moments of conscious experience
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that cohere together despite their diversity. Because of the apparent unity and coher-
ence of our awareness, we can develop a sense of self that can gradually mature with
our experiences of the world. This capacity lies at the heart of our ability to function
as intelligent beings.

The apparent unity and coherence of our experiences is al the more remarkable
when we consider several properties of how the brain copes with the environmental
eventsthat it processes. First and foremost, these events are highly context sensitive.
When we look at a complex picture or scene as a whole, we can often recognize its
objects and its meaning at a glance, as in the picture of a familiar face. However, if
we process the face piece-by-piece, as through a small aperture, then its significance
may be greatly degraded. To cope with this context sensitivity, the brain typically
processes pictures and other sense data in paralel, as patterns of activation across
alarge number of feature-sensitive nerve cells, or neurons. The sameistrue for senses
other than vision, such as audition. If the sound of the word GO is atered by clipping
off the vowel O, then the consonant G may sound like a chirp, quite unlike its sound
as part of GO.

During vision, al the signalsfrom a scenetypically reach the photosensitive retinas
of the eyes at essentially the same time, so parallel processing of all the scene' s parts
begins at the retina itself. During audition, each successive sound reaches the ear at
alater time. Before an entire pattern of sounds, such astheword GO, can be processed
as awhole, it needs to be recoded, at a later processing stage, into a simultaneously
available spatial pattern of activation. Such a processing stage is often called awork-
ing memory, and the activations that it stores are often called short-term memory
(STM) traces. For example, when you hear an unfamiliar telephone number, you can
temporarily store it in working memory while you walk over to the telephone and
dia the number.

In order to determine which of these patterns represents familiar events and which
do not, the brain matches these patterns against stored representations of previous
experiences that have been acquired through learning. Unlike the STM traces that
are stored in a working memory, the learned experiences are stored in long-term
memory (LTM) traces. One difference between STM and LTM traces concerns how
they react to distractions. For example, if you are distracted by a loud noise before
you dial a new telephone number, its STM representation can be rapidly reset so that
you forget it. On the other hand, if you are distracted by aloud noise, you (hopefully)
will not forget the LTM representation of your own name.

The problem of learning makes the unity of conscious experience particularly hard
to understand, if only because we are able to rapidly learn such enormous amounts
of new information, on our own, throughout life. For example, after seeing an exciting
movie, we can tell our friends many details about it later on, even though the individ-
ual scenes flashed by very quickly. More generally, we can quickly learn about new
environments, even if no one tells us how the rules of each environment differ. To
a surprising degree, we can rapidly learn new facts without being forced to just as
rapidly forget what we already know. As a result, we do not need to avoid going
out into the world for fear that, in learning to recognize a new friend's face, we will
suddenly forget our parents’ faces.

Many contemporary learning algorithms would not be so lucky. Speaking techni-
cally, the brain solves a very hard problem that many current approaches to technol-



BRAIN LEARNING, ATTENTION, AND CONSCIOUSNESS 3

ogy have not solved. It is a self-organizing system that is capable of rapid yet stable
autonomous learning of huge amounts of data in a nonstationary environment. Dis-
covering the brain’s solution to this key problem is as important for understanding
ourselves as it is for developing new pattern recognition and prediction applications
in technology.

| have called the problem whereby the brain learns quickly and stably without
catastrophically forgetting its past knowledge the stability—plasticity dilemma. The
stability—plasticity dilemma must be solved by every brain system that needs to rap-
idly and adaptively respond to the flood of signals that subserves even the most
ordinary experiences. If the brain’s design is parsimonious, then we should expect
to find similar design principles operating in all the brain systems that can stably
learn an accumulating knowledge base in response to changing conditions throughout
life. The discovery of such principles should clarify how the brain unifies diverse
sources of information into coherent moments of conscious experience.

This article reviews evidence that the brain does operate in thisway. It summarizes
several recent brain modeling studies that illustrate, and further develop, a theory
called Adaptive Resonance Theory, or ART, that | introduced in 1976 (Grossberg,
1976a,b, 1978, 1980, 1982). In the present article, | briefly summarize results selected
from four areas where ART principles have been used to explain challenging behav-
ioral and brain data. These areas are visua perception, visua object recognition,
auditory source identification, and variable-rate speech recognition. On first inspec-
tion, the behavioral properties of these visual and auditory phenomena may seem to
be entirely unrelated. On a deeper computational level, their governing neural circuits
are proposed to incorporate a similar set of computational principles.

| should al'so say right away, however, that ART principles do not seem to be used
inal brain learning systems. Whereas ART learning designs help to explain sensory
and cognitive processes such as perception, recognition, attention, reinforcement, re-
call, working memory, and memory search, other types of learning seem to govern
spatial and motor processes. In these latter task domains, it is adaptive to forget old
coordinate transformations as the brain’s control systems adjust to a growing body
and to other changes in the body’s sensory—motor endowment throughout life.

Sensory and cognitive processes are often associated with the What cortical pro-
cessing stream that passes from the visual cortex through the inferotemporal cortex,
whereas spatial and motor processes are associated with the Where (or How) corti-
cal processing stream that passes from the visua cortex through the parietal cortex
(Goodale & Milner, 1992; Mishkin, Ungerleider, & Macko, 1983; Ungerleider &
Mishkin, 1982). Our research over the years has concluded that many processes in
the two distinct streams, notably their matching and learning processes, obey differ-
ent, and even complementary, laws. Thisfact bears heavily on questions of conscious-
ness and helps to explain why procedural memories are not conscious (Cohen &
Squire, 1980; Mishkin, 1982; Scoville & Milner, 1957; Squire & Cohen, 1984). In-
deed, a central hypothesis of ART since its inception is

ART Hypothesis: All Conscious States are Resonant States.

As noted in greater detail below, many spatial and motor processes involve aform
of inhibitory matching and mismatch-based learning that does not support resonant
states. Hence, by the ART Hypothesis, they cannot support a conscious state. Al-
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though ART predicts that all conscious states are resonant states, the converse state-
ment, that all resonant states are conscious states, is not yet asserted.

It might be worthwhile to note immediately that various other models of cognitive
learning and recognition, such as the popular backpropagation model (Parker, 1982;
Rumelhart, Hinton, & Williams, 1986; Werbos, 1974), are based on a form of mis-
match-based learning. They cannot, therefore, generate resonant states and, in fact,
are well known to experience catastrophic forgetting under real-time learning condi-
tions. A comparative survey of ART vs backpropagation computational properties
is provided in Grossberg (1988).

THE THEORETICAL METHOD

Another point worth noting is how one arrives at a psychophysiological theory
such as ART which attempts to link behaviora properties to the brain mechanisms
which generate them. Such alinkage between brain and behavior is, | believe, crucial
in any mature theory of consciousness, since a theory of consciousness that cannot
explain behavioral data has failed to deal with the contents of consciousness, and a
theory of consciousness that cannot link behaviors to the brain mechanisms from
which they emerge must remain, at best, a metaphor.

A particular type of theoretical method has been elaborated over the past 30 years
with which to approach such complex behavioral and brain phenomena. The key is
to begin with behavioral data, typically scores or even hundreds of parametrically
structured behavioral experiments in a particular problem domain. One begins with
behavioral data because the brain has evolved in order to achieve behavioral success.
Any theory that hopes to link brain to behavior thus needs to discover the computa-
tional level on which brain dynamics control behavioral success. One works with
large amounts of data because otherwise too many seemingly plausible hypotheses
cannot be ruled out.

A crucia metatheoretical constraint isto insist upon understanding the behavioral
data—which comes to us as static numbers or curves on a page—as the emergent
properties of a dynamical process which is taking place moment-by-moment in an
individual mind. One also needs to respect the fact that our minds can adapt on their
own to changing environmental conditions without being told that these conditions
have changed. One thus needs to frontally attack the problem of how an intelligent
being can autonomously adapt to a changing world. Knowing how to do thisis pres-
ently an art form. There are no known algorithms with which to point the way.

Whenever we have attempted this task in the past, we have resisted every tempta-
tion to use homunculi or else the crucia constraint on autonomous adaptation would
be violated. The result has regularly been the discovery of new organizational princi-
ples and mechanisms, which we have then realized as a minimal model operating
according to only locally defined laws that are capable of operating on their own in
real time. The remarkable fact is that, when such a model has been written down, it
has always been interpretable asaneural network. These neural networks have aways
included known brain mechanisms. The functional interpretation of these mecha
nisms has, however, often been novel because of the light thrown upon them by
the behavioral analysis. The networks have also typically predicted the existence of
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unknown neural mechanisms, and many of these predictions have been supported by
subsequent neurophysiological, anatomical, and even biochemical experiments over
the years. Once this neural connection has been established by a top-down analysis,
one can work both top-down from behavior and bottom-up from brain to exert a
tremendous amount of conceptual pressure with which to better characterize and re-
fine the model. A fundamental empirical conclusion can be drawn from many experi-
ences of this type; namely, the brain as we know it can be successfully understood
as an organ that is designed to achieve successful autonomous adaptation to a chang-
ing world. | like to say that, although | am known as one of the founders of the field
of neural networks, | have never tried to derive a neural network. They are there
because they provide anatural computational framework with which to control auton-
omous behavioral adaptation to a changing world.

Such areal-time analysis is not easy because it requires that one have knowledge,
and even mastery, of several disciplines. For example, it has aways proved to be
the case that the level of brain organization that computes behavioral success is the
network or system level. Does this mean that individual nerve cells, or even smaller
components, are unimportant? Not at all. One needs to properly define the individual
nerve cells and their interactionsin order to correctly define the networks and systems
whose interactive, or emergent, properties map onto behavior as we know it. Thus
one must be able to freely move between (at least) the three levels of Neuron, Net-
work, and Behavior in order to complete such a theoretical cycle.

Doing this requires that one has a sufficiently powerful theoretical language. The
language of mathematics has proved to be the relevant tool, indeed a particular kind
of mathematics. All of the self-adapting behavioral and brain systems that | have
ever derived are nonlinear feedback systems with large numbers of components op-
erating over multiple spatial and temporal scales. The nonlinearity just means that
our minds are not the sum of their parts. The feedback means that interactions occur
in both directions within the brain and between the brain and its environment. The
multipletemporal scales arethere because, for example, processeslike STM arefaster
than the processes of learning and LTM. Multiple spatial scales are there because the
brain needs to process parts as well as wholes. All of thisis very easy to say intu-
itively. But when one needs to work within the tough honesty of mathematics, things
are not so easy. Most of the difficulties that people seem to have in understanding
what is already theoretically known about such systems derives from aliteracy prob-
lem in which at least one, but often more than one, of the ingredients of neuron,
network, behavior, and nonlinear feedback mathematics are not familiar to them.

A second important metatheoretical constraint derives from the fact that no single
step of theoretical derivation can derive a whole brain. One needs to have a method
that can evolve with the complexity of the environmental challenges that the model
isforced to face. Thisis accomplished asfollows. After introducing a dynamic model
of a prescribed set of data, one analyzes its behavioral and brain data implications
aswell asitsformal properties. The cycle between intuitive derivation and compute-
tional anaysis goes on until one finds the most parsimonious and most predictive
realization of the organizationa principlesthat one has aready discovered. Through
this analysis, one can also identify various ‘‘ species-specific variations’ of such a
prototypical model and apply them to different types of data. Such atheoretical analy-



6 STEPHEN GROSSBERG

sis also discloses the shape of the boundary, within the space of data, beyond which
the model no longer has explanatory power. The shape of this boundary between the
known and the unknown then often clarifies what design principles have been omitted
from the previous analyses. The next step is to show how these additional design
principles can beincorporated into amore powerful model that can explain even more
behavioral and neura data. In this way, the model undergoes a type of evolutionary
development, as it tries to cope behaviorally with environmental constraints of ever
increasing subtlety and complexity.

The metatheoretical constraint that comes into view here is an embedding con-
straint; in other words, one needs to be able to embed the previous model into the
new model. Otherwise expressed, the previous model needs to be *‘unlumpable’’ as
it evolves into an increasingly complex ‘‘brain.’” This is a type of correspondence
principle that places a surprisingly severe test on the adequacy of the previously
discovered theoretical principles. Many models regularly fail the embedding con-
straint. That is why they come and go with surprisingly rapidity and do not get inte-
grated into burgeoning theories of ever greater predictive power.

The crucial importance of being able to derive behavioral mechanisms as emergent
properties of real-time brain mechanisms, and being able to embed a previous model
into a more mature model that is capable of adapting to more complex environments,
led me to the name Embedding Fields for my earliest models of brain and behavior
(Grossberg, 1964). The word ‘‘fields”’ is a short-hand for the neural network as a
computational unit whose interactions generate behavioral emergent properties; the
word ‘‘embedding’’ refers to the unlumpability constraint. Many stages of model
evolution have occurred since the mid-1960s and all of them have successfully built a
foundation for their progeny. The present article will necessarily omit these modeling
cyclesand will instead discuss some of its resultsfrom the viewpoint of consciousness
research.

HOW DO WE PERCEIVE ILLUSORY CONTOURS AND BRIGHTNESS?

Let me start by providing several examples of the diverse phenomena that ART
clarifies. Consider the imagesin Fig. 1. Figure 1A shows an image called an Ehren-
stein figure in which some radial black lines are drawn on a uniformly white paper.
Remarkably, our minds construct a circular illusory contour that touches each line
end at a perpendicular orientation. This illusory contour is a collective, emergent
property of al the lines that only occurs when their positions relative to each other
are suitable. For example, no illusory contour forms at the line ends in Fig. 1B even
though they end at the same positions as the lines in Fig. 1A. Note also that the
illusory contour in Fig. 1A surrounds a disk that seems uniformly brighter than its
surround. Where does the brightness enhancement come from? It certainly does not
always happen when illusory contours from, as can be seen by inspecting Fig. 1C.
Here a vertical illusory contour can be recognized as interpolating the two sets of
offset horizontal lines, even though neither side of the contour seems brighter than
the other. How we can consciously recognize something that we cannot see and is
thus perceptualy invisible is a fascinating aspect of our conscious awareness about
which quite a bit is now known. Such percepts are known as amodal percepts (Mi-
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FIG. 1. (A) TheEhrenstein pattern generates a circular illusory contour that encloses a circular disk
of enhanced illusory brightness. (B) If the endpoints of the Ehrenstein pattern remain fixed while their
orientations are tilted, then both the illusory contour and the brightness vanish. (C) The offset pattern
generates a vertical boundary that can be recognized even though it cannot be seen.

chotte, Thines, & Crabbe, 1964) in order to distinguish them from modal, or visible,
percepts. Amodal percepts are experienced in response to many naturalistic scenes,
notably in response to scenes in which some objects are partially occluded by other
objects. How both modal and amodal percepts can occur will be discussed below.
Of particular interest from the viewpoint of ART processing is why the Ehrenstein
disk looks bright, despite the fact that there are no local contrasts within the image
itself that describe a disk-like object.

HOW DO WE LEARN TO RECOGNIZE VISUALLY PERCEIVED OBJECTS?

The Ehrenstein example concerns the process of visual perception. The next exam-
ple concerns a process that goes on at a higher level of the visual system. It is the
process whereby we visually recognize objects. A key part of this process concerns
how we learn to categorize specific instances of an object, or set of objects, into a
more general concept. For example, how do we learn that many different printed or
script letter fonts can al represent the same letter A? Or how do we learn that several
different combinations of patient symptoms are all due to the same disease? More-
over, how do we control how general our categorieswill become? For some purposes,
like recognizing a particular face, we need highly specific categories. For others, like
knowing that every person has a face, the categories are much more general. Finaly,
how does our learning and memory break down when something goes wrong in our
brain? For example, it is known that lesions to the human hippocampal system can
cause a form of amnesia whereby, among other properties, patients find it very hard
to learn new information and hard to remember recently learned information, but
previously learned information about which their memory has *‘consolidated’’ can
readily be retrieved. Thus, an amnesic patient can typically carry out a perfectly
intelligent conversation about experiences that occurred a significant time before the
lesion that caused the amnesia occurred.

What computational properties do the phenomena of bright illusory disks and am-
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nesic memory have in common? | will suggest below that their apparent differences
conceal the workings of a general unifying principle.

HOW DO WE SOLVE THE COCKTAIL PARTY PROBLEM?

To continue with our list, let usnow consider adifferent modality entirely; namely,
audition. When we talk to a friend in a crowded noisy room, we can usualy keep
track of our conversation above the hubbub, even though the sounds emitted by the
friendly voice may be substantially overlapped by the sounds emitted by other speak-
ers. How do we separate this jumbled mixture of sounds into distinct voices? This
is often called the cocktail party problem. The same problem is solved whenever we
listen to a symphony or other music wherein overlapping harmonic components are
emitted by severa instruments. If we could not separate the instruments or voices
into distinct sources, or auditory streams, then we could not hear the music as music
or intelligently recognize a speaker’'s sounds. A striking and ubiquitous property of
such percepts, and one which has not yet been understood by alternative modeling
approaches, is how future events can ater our conscious percepts of past events in
a context-sensitive manner.

A simple version of this competence is illustrated by the auditory continuity illu-
sion (Bregman, 1990). Suppose that a steady tone shuts off just as a broadband noise
turns on. Suppose, moreover, that the noise shuts off just as the tone turns on once
again; see Fig. 2A. When this happens under appropriate conditions, the tone seems
to continue right through the noise, which seems to occur in a separate auditory
“‘stream.’”’ This example shows that the auditory system can actively extract those
components of the noise that are consistent with the tone and use them to track the
““voice’’ of the tone right through the hubbub of the noise.

In order to appreciate how remarkable this property is, let us compare it with what
happens when the tone does not turn on again for a second time, asin Fig. 2B. Then
the first tone does not seem to continue through the noise. It is perceived to stop
before the noise. How does the brain know that the second tone will turn on after
the noise shuts off so that it can continue the tone through the noise, yet not continue
the tone through the noise if the second tone does not eventually occur? Does this
not seem to require that the brain can operate ‘‘ backward in time’’ to alter itsdecision
as to whether to continue a past tone through the noise based on future events?

Many philosophers and scientists have puzzled about this sort of problem. | argue
that the process whereby we consciously hear the first tone takes some time to unfold
so that by the time we hear it, the second tone has already begun. To make this
argument, we need to ask why does conscious audition take so long to occur after
the actual sound energy reaches our brain? Just as important, why can the second
tone influence the conscious percept so quickly, given that the first tone could not?
Finally, | indicate what these auditory phenomena have to do with bright Ehrenstein
disks and amnesia.

HOW DO WE CONSCIOUSLY PERCEIVE SPEECH?

The final examples aso involve the auditory system, but at a higher level of pro-
cessing. They concern how we understand speech. In these examples, too, the process
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FIG. 2. (A) Auditory continuity illusion: When a steady tone occurs both before and after a burst
of noise, then under appropriate temporal and amplitude conditions, the tone is perceived to continue
through the noise. (B) This does not occur if the noise is not followed by a tone.

whereby conscious awareness occurs takes a long time, on the order of 100 ms or
more. An analysis of these percepts will also give us more clues about the nature of
the underlying process. The first example is called phonemic restoration. Suppose
that a listener hears a noise followed immediately by the words *‘eel isonthe. . ..”
If this string of words is followed by the word ‘*orange,”” then ‘‘noise-eel’’ sounds
like “*peel.”” If theword *‘wagon’’ completes the sentence, then **noise-eel’” sounds
like **wheel.”” If the final word is *‘shoe,”” then **noise-eel’’ sounds like *‘heel.’”

This marvelous example, which was developed by Richard Warren and his col-
leagues more than 20 years ago (Warren, 1984; Warren & Sherman, 1974), vividly
shows that the bottom-up occurrence of the noise is not sufficient for us to hear it.
Somehow the sound that we expect to hear based upon our previous language experi-
ences influences what we do hear, at least if the sentence is said quickly enough. As
in the auditory continuity illusion, it would appear that the brain is working *‘ back-
ward intime'’ to allow the meaning imparted by alater word to alter the sounds that
we consciously perceive in an earlier word.
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| suggest that this happens because as the individual words occur, they are stored
temporarily via STM traces in a working memory. As the words are stored, they
activate LTM traces which attempt to categorize the stored sound stream into familiar
language units like words at a higher processing level. These list categories, in turn,
activate learned top-down expectations that are matched against the contents of work-
ing memory to verify that the information expected from previous learning experi-
ences is redly there. This concept of bottom-up activation of learned categories by
aworking memory, followed by read-out of learned top-down expectations, isillus-
trated in Fig. 3A.

What is the nature of this matching, or verification, process? Its properties have
been clarified by experiments of Arthur Samuel (Samuel, 1981a,b) and others in
which the spectral content of the noise was varied. If the noise includes al the for-
mants of the expected sound, then that is what the subject hears, and other spectral
components of the noise are suppressed. |f some formants of the expected sound are
missing from the noise, then only a partial reconstruction is heard. If silence replaces
the noise, then only silenceis heard. The matching process thus cannot *‘ create some-
thing out of nothing.”” It can, however, selectively amplify the expected features in
the bottom-up signal and suppress the rest, asin Fig. 3B.

The process whereby the top-down expectation selectively amplifies some features
while suppressing others helps to ‘‘focus attention”” upon information that matches
our momentary expectations. This focusing process helps to filter out the flood of
sensory signal s that would otherwise overwhelm us and to prevent them from destabi-
lizing our previously learned memories. Learned top-down expectations hereby help
to solve the stability—plasticity dilemma by focusing attention and preventing spuri-
ous signals from accidentally eroding our previously learned memories. In fact, Gail
Carpenter and | proved mathematically in 1987 that such an ART matching rule
assures stable learning of an ART model in response to rapidly changing environ-
ments wherein learning becomes unstable if the matching rule is removed (Carpenter
and Grossberg, 1987a).

What does al this have to do with our conscious percepts of speech? This can be
seen by asking: If top-down expectations can select consistent bottom-up signals,
then what keeps the selected bottom-up signals from reactivating their top-down ex-
pectations in a continuing cycle of bottom-up and top-down feedback? Nothing does.
In fact, thisreciprocal feedback process takes awhile to equilibrate, and when it does,
the bottom-up and top-down signals lock the STM activity patterns of the interacting
levels into a resonant state that lasts much longer and is more energetic than any
individual activation. ART hereby suggests how only resonant states of the brain can
achieve consciousness and that the time needed for a bottom-up/top-down resonance
to develop helps to explain why a conscious percept of an event takes so long to
occur after its bottom-up input is delivered.

The example of phonemic restoration also clarifies another key point about the
conscious perception of speech. If noise precedes ‘‘edl is on the shoe,”” we hear and
understand the meaning of the sentence ‘‘heel is on the shoe.’’ If, however, noise is
replaced by silence, we hear and understand the meaning of the sentence ‘‘eel ison
the shoe'’ which has a quite different, and rather disgusting, meaning. This example
shows that the process of resonance binds together information about both meaning
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FIG.3. (A) Auditory itemsactivate STM tracesin aworking memory, which send bottom-up signals
toward a level at which list categories, or chunks, are activated in STM. These bottom-up signals are
multiplied by learned LTM traces which influence the selection of the list categories that are stored in
STM. Thelist categories, in turn, activate L TM-modul ated top-down expectation signal s that are matched
against the active STM pattern in working memory. (B) This matching process confirms and amplifies
STM activations that are supported by contiguous LTM traces and suppresses those that are not.
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and phonetics. Meaning is not some higher-order process that is processed indepen-
dent from the process of conscious phonetic hearing. Meaning and phonetics are
bound together via resonant feedback into a global emergent state in which the pho-
netics that we hear are linked to the meaning that we understand.

ART MATCHING AND RESONANCE: THE LINK BETWEEN ATTENTION,
INTENTION, AND CONSCIOUSNESS

Adaptive resonance theory claims that in order to solve the stability—plasticity
dilemma only resonant states can drive new learning. That is why the theory is called
adaptive resonance theory. | explain how this works more completely below. Before
doing so, let me emphasize some implications of the previous discussion that are
worth reflecting about. The first implication provides a novel answer as to why, as
philosophers have asked for many years, humans are *‘intentional’’ beings who are
always anticipating or planning their next behaviors and their expected consegquences.
ART suggests that ** stability impliesintentionality.”” That is, stable learning requires
that we have expectations about the world that are continually matched against world
data. Otherwise expressed, without stable learning, we could learn very little about
the world. Having an active top-down matching mechanism greatly amplifies the
amount of information that we can stably learn about the world. Thusthe mechanisms
which enable usto know achanging external world, through the use of learned expec-
tations, set the stage for achieving internal self-awareness.

It should be noted here that the word *‘intentionality’’ is being used, at once, in
two different senses. One sense concerns the role of expectations in the anticipation
of eventsthat may or may not occur. The second sense concernsthe ability of expecta-
tions to read-out planned sequences of behaviors aimed at achieving definite behav-
ioral goals. The former sense will be emphasized first; the latter toward the end of
the article. My main point in lumping them together is that ART provides a unified
mechanistic perspective with which to understand both uses of the word.

The second implication is that ‘‘intention implies attention and consciousness.’’
That is, expectations start to focus attention on data worthy of learning, and these
attentional foci are confirmed when the system as a whole incorporates them into
resonant states that include (I claim) conscious states of mind.

Implicit in the concept of intentionality is the idea that we can get ready to experi-
ence an expected event so that when it finally occurs we can react to it more quickly
and vigorously, and until it occurs, we are able to ignore other, less desired, events.
This property is called priming. It implies that, when a top-down expectation is read-
out in the absence of a bottom-up input, it can subliminally sensitize the cells that
would ordinarily respond to the bottom-up input, but not actualy fire them, while it
suppresses cells whose activity is not expected. Correspondingly, the ART matching
rule computationally realizes the following properties at any processing level where
bottom-up and top-down signals are matched: (1) bottom-up automatic activation:
A cell, or node, can become active enough to generate output signals if it receives
a large enough bottom-up input, other things being equal; (2) top-down priming: A
cell can become sensitized, or subliminally active, and thus cannot generate output
signalsif it receives only alarge top-down expectation input. Such atop-down prim-
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ing signal prepares acell to react more quickly and vigorously to subsequent bottom-
up input that matches the top-down prime; (3) match: A cell can become active if
it receives large convergent bottom-up and top-down inputs. Such a matching process
can generate enhanced activation as resonance takes hold; (4) mismatch: A cell is
suppressed even if it receives alarge bottom-up input if it also receives only a small,
or zero, top-down expectation input.

| claim that this ART matching rule and the resonance rule that it implies operate
in all the examples that | have previously sketched and do so to solve the stability—
plasticity dilemma. All the examples are proposed to illustrate how we can continue
to learn rapidly and stably about new experiences throughout life by matching bot-
tom-up signal patterns from more peripheral to more central brain processing stages
against top-down signal patterns from more central to more peripheral processing
stages. These top-down signals represent the brain’s learned expectations of what
the bottom-up signal patterns should be based upon past experience. The matching
process is designed to reinforce and amplify those combinations of features in the
bottom-up pattern that are consistent with the top-down expectations and to suppress
those features that are inconsistent. This top-down matching step initiates the process
whereby the brain selectively pays attention to experiencesthat it expects, bindsthem
into coherent internal representations through resonant states, and incorporates them
through learning into its knowledge about the world.

Given that such a resonant matching process occurs in the brain, how does the
brain react when there is a mismatch situation? The ART matching rule suggests that
a big enough mismatch between a bottom-up input and a top-down expectation can
rapidly attenuate activity at the matching level. This collapse of bottom-up activation
can initiate arapid reset of activity at both the matching level itself and at the subse-
guent levels that it feeds, thereby initiating a memory search for a more appropriate
recognition category or creating a new one.

RESONANT DYNAMICS DURING SPEECH CATEGORIZATION

Many examples of such areset event occur during variable-rate speech perception.
As one example, consider how people hear combinations of vowels (V) and conso-
nants (C) in VC—CV sequences. Bruno Repp at Haskins Laboratories has studied
perception of the sequences[ib]—[ga] and [ib]—[ba] when the silenceinterval between
the initial VC syllable and the terminal CV syllable is varied (Repp, 1980). If the
silenceinterval is short enough, then [ib]—[ga] sounds like [iga] and [ib]—[ba] sounds
like [iba)]. Repp ran a number of conditions, leading to the severa data curves dis-
played in Fig. 4. The main point for present purposes is that the transition from a
percept of [iba] to one of [ib]—[ba] occurs after 100-150 ms more silence than the
transition from [igd] to [ib]—[ga]. One hundred milliseconds is avery long time rela
tive to the time scale at which individual neurons can be activated. Why is this shift
so large?

My colleagues lan Boardman and Michael Cohen and | have quantitatively simu-
lated these data using a model, called the ARTPHONE model, of how a resonant
wave devel ops due to bottom-up and top-down signal exchanges between a working
memory that represents the individual speech items and a list categorization network
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FIG. 4. The left-hand curves represent the probability, under several experimental conditions, that
the subject will hear [ib]-[ga] rather than [iga]. The right-hand curves do the same for [ib]-[ba] rather
than the fused percept [iba]. Note that the perception of [iba] can occur at a silence interval between
[ib] and [ba] that is up to 150 ms longer than the one that leads to the percept [iga] instead of [ib]-[ga].
(Data are reprinted with permission from B.H. Repp (1980), Haskins Laboratories Status Report on
Speech Research, SR-61, 151-165.)

that groups them together into learned language units, or chunks (Grossberg, Board-
man, & Cohen, 1997). We have shown how a mismatch between [g] and [b] rapidly
resets the working memory if the silence between them is short enough, thereby
preventing the [b] sound from reaching resonance and consciousness, as in Fig. 5.
We have also shown how the development of a previous resonance involving [b]
can resonantly fuse with a subsequent [b] sound to greatly extend the perceived dura-
tion of [iba] across a silence interval between [ib] and [ba]. Figure 6A illustrates this
property by suggesting how the second presentation of [b] can quickly reactivate the
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FIG.5. (A)Responseto asingle stop, such as[b] or [g], with and without resonance. Suprathreshold
activation is shaded. (B) Reset due to phonologic mismatch between [ib] and [ga].

resonance in response to the first presentation of [b] before the resonance stops. This
phenomenon uses the property that it takes longer for the first presentation of [b] to
reach resonance than it doesfor the second presentation of [b] to influence the mainte-
nance of this resonance.

If, however, [ib] can fuse across time with [ba], then how do we ever hear distinct
[ib]—[ba] sounds when the silence gets long enough? Much evidence suggests that
after a resonance fully develops, it spontaneously collapses after awhile due to a
habituative process that goes on in the pathways that maintain the resonance via

[ib]-[ba] — [iba] [ib]-[ba] or [ib]-[ga]
A fusion \ perceived
silence

A—I-—,‘_> B — >

FIG. 6. (A) Fusion in response to proximal similar phones. (B) Perceptual silence allows a two-
stop percept.
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bottom-up and top-down signals. Thus, if the silence is long enough for resonant
collapse of [ib] to occur, then a distinguishable [ba] resonance can subsequently de-
velop and be heard, as in Fig. 6B.

Such a habituative process has also been used to explain many other data about
perception, learning, and recognition, notably dataabout the reset of visual, cognitive,
or motor representations in response to rapidly changing events. Relevant visual data
include properties of light adaptation, visual persistence, aftereffects, residual traces,
and apparent motion (Carpenter & Grossberg, 1981; Francis & Grossberg, 1996a,b;
Francis, Grossberg, & Mingolla, 1994). Abbott et al. (1997) have recently reported
data from the visual cortex that they modeled using the same habituative law that
was used in all of these applications. At bottom, such a habituative law is predicted
to be found so ubiquitously across brain systems because it helps to rapidly adapt,
reset and rebalance neural circuits in response to rapidly changing input conditions,
notably as part of an opponent process (Grossberg, 1980).

The Repp (1980) dataillustrate the important fact that the duration of a consciously
perceived interval of silenceis sensitive to the phonetic context into which the silence
is placed. These data show that the phonetic context can generate a conscious percept
of continuous sound across 150 ms of silence—that can be heard as silence in a
different phonetic context. Our explanation of these data in terms of the maintenance
of resonance in one case, but its rapid reset in another, is consistent with a smple,
but revolutionary, definition of silence: Silence isatemporal discontinuity in the rate
with which the auditory resonance evolves in time. Various other models of speech
perception, having no concept like resonance on which to build, cannot begin to
explain data of thistype. Several such models are reviewed in Grossberg, Boardman,
and Cohen (1997).

RESONANT DYNAMICS DURING AUDITORY STREAMING

A similar type of resonant processing helps to explain cocktail party separation
of distinct voices into auditory streams, as in the auditory continuity illusion of Fig.
2. This process goes on, however, at earlier stages of auditory processing than speech
categorization. My colleagues Krishna Govindargjan, Lonce Wyse, and Michael Co-
hen and | have developed a model, called the ARTSTREAM model, of how distin-
guishable auditory streams are resonantly formed and separated (Grossberg, 1998b;
Govindargjan, Grossberg, Wyse, & Cohen, 1995). Here the two main processing
levels (Fig. 7) are a spectral stream level at which the frequencies of the sound spec-
trum are represented across a spatial map and a pitch stream level at which pitch
nodes respond to the harmonics at the spectral stream level that comprise a given
pitch. After the auditory signal is preprocessed, its spectral, or frequency, components
are redundantly represented in multiple spectral streams; that is, the sound’s prepro-
cessed frequency components are represented in multiple spatial maps, each one of
which can subserve the percept of a particular auditory stream.

Each of these spectral streamsisfiltered by bottom-up signals that activate its own
pitch stream representation at the pitch stream level; that is, there are multiple pitch
streams, one corresponding to every spectral stream. This multiple representation of
a sound’s spectral components and pitch interact to break up the entire sound stream



BRAIN LEARNING, ATTENTION, AND CONSCIOUSNESS 17

| ' o
i 2
Etl::zl:m I I O Pitch
T 1 O0000 | O layer
Pitch +‘ 17/ '
Wi 3
Spectral / 7?\ 2
stream 71 LY
layer 1

Frequency

Peripheral Processing

Energy measure

Basilar membrane
| Gammatone filterbank

Outer and middle ear
Preemphasis

Input signal

FIG. 7. Block diagram of the ARTSTREAM auditory streaming model. Note the nonspecific top-
down inhibitory signals from the pitch level to the spectra level that realize ART matching within the
network.

that is entering the system into distinct acoustic sources or voices. This happens as
follows. A given sound spectrum is multiply represented at all the spectral streams
and then redundantly activates all of the pitch nodes that are consistent with these
sounds. These pitch representations compete to select a winner, which inhibits the
representations of the same pitch across streams, while al so sending top-down match-
ing signals back to the spectral stream level. By the ART matching rule, the frequency
components that are consistent with the winning pitch node are amplified, and all
others are suppressed, thereby |leading to a spectral-pitch resonance within the stream
of the winning pitch node. In this way, the pitch layer coherently binds together the
harmonically related frequency components that correspond to a prescribed auditory
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FIG. 8. Oneway to redize the ART matching rule using top-down activation of nonspecific inhibi-
tory interneurons. Several mathematically possible aternative ways are suggested in the Appendix of
G. A. Carpenter and S. Grossberg (1987a).

source. All the frequency components that are suppressed by ART matching in this
stream are freed to activate and resonate with a different pitch in a different stream.
The net result is multiple resonances, each selectively grouping together into pitches
those frequencies that correspond to distinct auditory sources.

Using the ARTSTREAM model, we have simulated many of basic streaming per-
cepts, including the auditory continuity illusion of Fig. 2. It occurs, | contend, because
the spectral stream resonance takes a time to develop that is commensurate to the
duration of the subsequent noise. Once the tone resonance devel ops, the second tone
can quickly act to support and maintain it throughout the duration of the noise, much
as [ba] fuses with [ib] during perception of [iba]. Of course, for this to make sense,
one needs to accept the fact that the tone resonance does not start to get consciously
heard until just about when the second tone occurs.

A CIRCUIT FOR ART MATCHING

Figure 7 incorporates one of the possible ways that Gail Carpenter and | proposed
in the mid-1980s for how the ART matching rule can be realized (Carpenter &
Grossherg, 1987a). This matching circuit isredrawn in Fig. 8 for clarity. It is perhaps
the simplest such circuit, and | have found it in subsequent studies to be the one that
is implicated by data time and time again.

In this circuit, bottom-up signalsto the spectral stream level can excite their target
nodesif top-down signals are not active. Top-down signalstry to excite those spectral,
or frequency component, nodes that are consistent with the pitch node that activates
them. By themselves, top-down signals fail to activate spectral nodes because the
pitch node also activates a pitch summation layer that nonspecifically inhibits all
spectral nodesin its stream. The nonspecific top-down inhibition hereby prevents the
specific top-down excitation from supraliminally activating any spectral nodes. On
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the other hand, when excitatory bottom-up and top-down signals occur together, then
those spectral nodes that receive both types of signals can be fully activated. All
other nodesin that stream are inhibited, including spectral nodes that were previously
activated by bottom-up signals but received no subsequent top-down pitch support.
Attention hereby selectively activates consistent nodes while nonselectively inhib-
iting all other nodes in a stream.

RESONANT DYNAMICS DURING BRIGHTNESS PERCEPTION

Having come this far, let us review how ART matching and resonance help to
explain the enhanced brightness of the Ehrenstein disk in Fig. 1A. This apparently
simple percept has attracted a great deal of attention from vision scientists because
one could imagine many reasons why no brightness difference or the reverse bright-
ness difference might have been seen instead. John Kennedy (Kennedy, 1979, 1988)
has attempted to explain this percept by positing that ** brightness buttons”’ occur at
the ends of dark (low luminance) lines. The textbook mechanism for explaining these
brightness buttons has, in turn, for decades been an appeal to the on-center, off-
surround receptive fields of early visua processing. A cell that possesses such a
receptivefield isexcited by inputs near the cell’ slocation (the on-center) but inhibited
by inputs to more distant locations (the off-surround).

An anadysis of how such cells respond to dark lines shows, however, that they
cannot, by themselves, explain brightness buttons. | show below why neither on-
center off-surround cells (called ON cells below) nor off-center on-surround cells
(called OFF cells below) can explain this phenomenon. Such ON and OFF cells
occur in the lateral geniculate nucleus (or LGN), which is a waystation from the
photosensitive retinain the eye to the visual cortex. Thus the ON and OFF cells that
occur in the LGN, and that are the source of cortical brightness percepts, cannot
explain brightness buttons without further processing. Figure 9 shows that whatever
contribution to area contrast is generated at the ends of thin lines by ON or OFF
cells must be less in magnitude than that generated along their sides. As explained
below, this should make the Ehrenstein disk appear darker, rather than brighter, than
its surround.

To see why thisis so, assume, asin Fig. 9B, that the thin line is black (low lumi-
nance) and surrounded by a white (high luminance) background. Since OFF cells
respond best to low luminance in their receptive field center and high luminance in
their surround, OFF cells whose centers lie inside the line will be activated. Further-
more, OFF cells near the line end (but still inside the ling) will be more strongly
activated than OFF cells in the middle of the line because the line end is more like
a black disk surrounded by a white background than the line middle is (Fig. 9B).
That is, an OFF cell whose center lies in the line end receives less inhibition from
its surround than does a cell centered in the middle of the line because a larger area
of the former cell’s surround lies in the white background.

A similar analysis can be applied to the ON cells. An ON cell is excited by high
luminance in the center of its receptive field and low luminance in its surround. The
ON cellsthat are active, then, are those centered outside the bar. An ON cell whose
center is just outside the side of the line will respond more strongly than an ON cell
centered just outside the end of the line (Fig. 9C).

Given that LGN ON and OFF cells, by themselves, cannot explain brightness but-
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FIG.9. Retina center-surround cells and their optimal stimuli (A). The ON cell, on the left, responds
best to a high-luminance disk surrounded by a low-luminance annulus. The OFF cell, on the right,
responds best to a low-luminance disk surrounded by a high-luminance annulus (B). OFF cells respond
to the inside of ablack line. The OFF cell centered at the line end responds more strongly than the OFF
cell centered in the middle because the surround region of the former cell is closer to optimal. In C
ON cells respond to the white background just outside the black line. The amount of overlap of each
ON cell’s surround with the black line affects the strength of the cell’s response. As seen in the ON
cell’s optimal stimulus (C), the more of the surround that is stimulated by a black region, the better the
ON cell will respond. Thus, an ON cell centered just outside the side of the line will respond better
than a cell centered just outside the end of the line because more of the off-surround is activated at the
end of the line than aong its side.

tons, an additional explanation needs to be found for how a brighter Ehrenstein disk
could be generated. Clues were provided by John Kennedy, who analyzed a number
of illusory contour stimuli. He argued that the effect of brightness buttons could often
go unnoticed for isolated line segments, but could somehow be pooled and amplified
in perceptual salience when several brightness buttons occurred in proximity or
within a figurally complete region. In the mid-1980s, | worked with several col-
leaguesto develop an analysis and interpretation of Kennedy’ sremarks by developing
aneural model of visual boundary and surface representation (Cohen & Grossberg,
1984; Grossherg & Mingolla, 19853, b; Grossberg & Todorovic, 1988).

In this model, the crucial mechanistic support for perceptually noticeable bright-
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ness buttons is a boundary segmentation that separates the region containing the but-
tons from other regions of a scene. Such a boundary segmentation may be generated
by image edges, textures, or shading and may give rise to illusory contours such as
the Ehrenstein circle. We suggested how brightness buttons could, at a later pro-
cessing stage, activate a diffusion process that could ‘*fill-in”’ a uniform level of
brightness within the bounding illusory contour. The model successfully explained
and predicted many facts about illusory contours and brightness percepts, among
other phenomena, but it incorrectly predicted that the Ehrenstein disk should look
darker than its surround. Given that so many brightness data had been correctly pre-
dicted by the model, including data collected after its publication, the question arose
of how the model’s description was incomplete or incorrect. Such an analysis was
recently carried out with Alan Gove and Ennio Mingolla (Gove, Grossberg, & Min-
golla, 1995). We showed how the addition of a feedback loop from the visual cortex
to the LGN helps to explain brightness buttons without disturbing the model’s previ-
ous explanations of other brightness phenomena.

The gist of this analysis can be summarized as follows. Brightness buttons are by
definition an effect of an oriented structure such as aline or, more generally, a corner
or sharp bend in a contour, on perceived brightness. Within the prior model, the
computations leading to brightness perception were unoriented in the sense that they
were initiated by ON and OFF cells with circularly symmetric receptive fields. How
then could the effects of oriented filtering be used to modulate the inputs to the
process that produces brightness buttons? Indeed, oriented filtering alone could not
suffice. Interactions must exist among the oriented filters to determine the location
of the ends of the lines at which the brightness buttons occur. A natural candidate
for the latter interactions is the cortical endstopping process that has been known,
since the Nobel-prize winning work of David Hubel and Thorstein Wiesel, to convert
cortical complex cells into endstopped complex, or hypercomplex, cells (Hubel &
Wiesel, 1977). These oriented cells are selectively activated at and near the ends of
lines. Where should the results of this endstopped processing have their effect on
brightness processing?

Having come this far, it is plausible to propose that the cortex influences LGN
cellsviatop-down feedback, which itiswell known to do. It isnot plausible, however,
that this massive feedback pathway exists just to make Ehrenstein disks appear bright.
| had, however, earlier predicted that corticogeniculate feedback exists for a poten-
tially important functional reason; namely, to enhance the activity of LGN cells that
support the activity of presently active cortical cells and to suppress the activity of
LGN cells that do not (Grossherg, 1976a,b, 1980). In addition, bottom-up retinal
input, by itself, was hypothesized to supraliminally activate LGN cells, but top-down
corticogeniculate feedback, by itself, was not. In other words, corticogeniculate feed-
back was predicted to realize an ART matching and resonance rule in order to control
and stabilize learned changesin cortical LTM tracesin response to the flood of visual
experience.

Figure 10 summarizes how this type of corticogeniculate feedback can produce
brightness buttons. Figure 11B summarizes a computer simulation of brightness but-
tons. The model’ s boundary completion network generates the circular illusory con-
tour of Fig. 11C. The brightness button activation pattern in Fig. 11B generates a
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FIG. 10. Schematic diagram of brightness button formation in the model. In A the distribution of
model LGN cell activities prior to receiving any feedback in response to a black bar isillustrated. Open
circles code ON cell activity; filled circles code OFF cell activity. (B) The effect of feedback in bottom-
up LGN activations. The plus (minus) signs designate the excitatory (inhibitory) top-down influence of
an oriented endstopped cortical cell. (C) The LGN activity distribution after endstopped feedback, such
as that in B, combines with the direct effect of ON and OFF cell processing, such as that in A. A
brightness button is formed outside both ends of the line.

topographic input to afilling-in domain, wherein the inputs diffuse freely in al direc-
tions until they hit a barrier to filling-in that is imposed by the circular boundary
signalsin Fig. 11C. The result is an Ehrenstein disk with uniformly enhanced bright-
ness relative to its surround in Fig. 11D.

Isthere direct experimental evidence that corticogenicul ate feedback can alter LGN
cell properties as desired? Murphy and Sillito (1987) showed that cortical feedback
causes significant length-tuning in cat LGN cells. As in cortical endstopping, the
responseto aline growsrapidly asafunction of linelength and then abruptly declines
for longer lines. The response to long lines is hereby depressed. Redies et al. (1986)
found that cat dorsal LGN cells and strongly endstopped cortical complex cells re-
sponded best at line ends. In other words, the response of the LGN cells to line ends
was enhanced relative to the response to line sides.

Isthere direct experimental evidence for the prediction that corticogenicul ate feed-
back supports ART matching and resonance? In a remarkable 1994 Nature article,
Sillito and his colleagues (Sillito et al., 1994) published neurophysiological data that
strikingly support this prediction. They wrote in particular that *‘ cortically induced
correlation of relay cell activity produces coherent firing in those groups of relay
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FIG. 11. (A) The Ehrenstein figure. (B) The LGN stage response. Both ON and OFF cell activities
are coded as rectified deflections from a neutral gray. Note the brightness buttons at the line ends.
(C) The equilibrium boundaries. (D) In the filled-in surface brightness, the central disk contains larger
activities than the background, corresponding to the perception of increased brightness. (Reprinted with
permission from Gove, Grossberg, & Mingolla, 1995.)

cells with receptive field alignments appropriate to signal the particular orientation
of the moving contour to the cortex . . . thisincreases the gain of theinput for feature-
linked events detected by the cortex . . . the cortico-thalamic input is only strong
enough to exert an effect on those dLGN cells that are additionally polarized by
their retinal input . . . the feedback circuit searches for correlations that support the
‘hypothesis’ represented by a particular pattern of cortical activity.”” In short, Sillito
verified all the properties of the ART matching rule.

HOW EARLY DOES ATTENTION ACT IN THE BRAIN?

If we take these results at face value, then it would appear that corticogenicul ate
feedback helps to *‘focus attention’” upon expected patterns of LGN activity. How-
ever, it is typicaly argued that visual attention first acts at much higher levels of
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cortical organization, starting with the extrastriate visual cortex. Isthere a contradic-
tion here? The answer depends upon how you define attention. If attention refers
only to processes that can be controlled voluntarily, then corticogenicul ate feedback,
being automatic, may not qualify. On the other hand, corticogeniculate feedback does
appear to have the selective properties of an ‘‘automatic’’ attention process.

ATTENTION AT ALL STAGES OF SENSORY
AND COGNITIVE NEOCORTEX?

It has, in fact, been suggested how similar automatic attentional processes areinte-
grated within the laminar circuits of visual cortex, notably the circuits of cortical
areas V1 and V2 that are used to generate perceptua groupings, such as the illusory
contours in Fig. 1 (Grossberg, 1998a). In this proposal, the ART matching rule is
realized as follows. Top-down attentional feedback from cortical area V2 to V1 is
predicted to be mediated by signals from layer 6 of cortical area V2. These top-down
signals attentionally prime layer 4 of cortical area V1 via an on-center off-surround
network within V1 from layer 6 to layer 4. In this conception, layer 6 of V2 activates
layer 6 of V1, possibly via a multisynaptic pathway, which in turn activates layer 4
of V1 via an on-center off-surround network from layer 6 to layer 4. This analysis
predicts that the layer-6-to-layer-4 on-center off-surround circuit can modulate layer
4 cells, but cannot fully activate them because the top-down attentional prime, acting
by itself, is subliminal. Such amodulatory effect is achieved by appropriately balanc-
ing the strength of the on-center and off-surround signals within the layer-6-to-layer-
4 network.

Related modeling work has shown how such balanced on-center off-surround sig-
nals can lead to self-stabilizing development of the horizontal connections within
layer 2/3 of V1 and V2 that subserve perceptual grouping (Grossberg & Williamson,
1997, 1998). It has also been shown how the top-down on-center off-surround circuit
from area V1 to LGN can self-stabilize the development of disparity-sensitive com-
plex cells in area V1 (Grunewald & Grossberg, 1998). Other modeling work has
suggested how a similar top-down on-center off-surround automatical attentional cir-
cuit from cortical area MST to MT can be used to generate coherent representations
of the direction and speed with which objects move (Chey, Grossberg, & Mingolla,
1997). Taken together, these studies show how the ART Matching Rule may be
realized in known cortical circuits, and how it can self-stabilize development of these
circuits as a precursor to its role in self-stabilizing later learning throughout life.
Grossherg (1998a) has predicted that the same ART matching circuit exists within
the laminar organization that isfound universally in all sensory and cognitive neocor-
tex, including the various examples of auditory processing that are reviewed above.
This prediction does not, of course, deny that these circuits may be specialized in
various ways to process the different types of information with which they are con-
fronted.

Given that the cortical organization of top-down on-center off-surround attentional
priming circuits seem to be ubiquitous in visual cortex, and by extension in other
types of cortex, it isimportant to ask: What more does the brain need to add in order
to generate a more flexible, task-dependent type of attention switching? This question
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FIG. 12. An example of a model ART circuit in which attentional and orienting circuits interact.
Level F; encodes a distributed representation of an event by a short-term memory (STM) activation
pattern across a network of feature detectors. Level F, encodes the event using a compressed STM
representation of the F; pattern. Learning of these recognition codes occurs at the long-term memory
(LTM) traces within the bottom-up and top-down pathways between levels F; and F,. The top-down
pathways read-out learned expectations whose prototypes are matched against bottom-up input patterns
at F,. The size of mismatches in response to novel events are evaluated relative to the vigilance parameter
p of the orienting subsystem A. A large enough mismatch resets the recognition code that is active in
STM at F, and initiates amemory search for amore appropriate recognition code. Output from subsystem
A can also trigger an orienting response.

leads us to our last example, that of visual object recognition, and how it breaks
down during medial temporal amnesia. Various other models of object recognition,
and their conceptual and explanatory weaknesses relative to ART, are reviewed in
Grossherg and Merrill (1996).

SELF-ORGANIZING FEATURE MAPS FOR LEARNED
OBJECT RECOGNITION

Let us begin with a two-level network that illustrates some of the main ideas in
the simplest possible way. Level F; in Fig. 12 contains a network of nodes, or cell
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populations, each of which is activated by a particular combination of sensory fea-
tures via inputs. Level F, contains a network of nodes that represent recognition
codes, or categories, which are selectively activated by the activation patterns across
Fi1. Each F; node sends output signals to a subset of F, nodes. Each F, node thus
receives inputs from many F; nodes. The thick bottom-up pathway from F, to F, in
Fig. 12 represents in a concise way an array of diverging and converging pathways.
Let learning take place at the synapses denoted by semicircular endingsin the F; —
F, pathways. Pathways that end in arrowheads do not undergo learning. This bottom-
up learning enables F, category nodes to become selectively tuned to particular com-
binations of activation patterns across F, feature detectors by changing their LTM
traces.

Why is not bottom-up learning sufficient in a system that can autonomously solve
the stability—plasticity dilemma? Why are learned top-down expectations also
needed? To understand this, we consider a type of model that is often called a self-
organizing feature map, competitive learning, or learned vector quantization. This
type of model shows how to combine associative learning and lateral inhibition for
purposes of learned categorization.

In such amodel, as shown in Fig. 13A, an input pattern registersitself as a pattern
of activity, or STM, across the feature detectors of level F,. Each F; output signal
ismultiplied, or gated, by the adaptive weight, or LTM trace, in its respective path-
way. All these LTM-gated inputs are added up at their target F, nodes. The LTM
traces hereby filter the STM signal pattern and generate larger inputs to those F,
nodes whose LTM patterns are most similar to the STM pattern. Lateral inhibitory,
or competitive, interactions within F, contrast-enhance this input pattern. Whereas
many F, nodes may receive inputs from F,, lateral inhibition allows a much smaller
set of F, nodes to store their activation in STM. These are the F, nodes, whose LTM
patterns are most similar to the STM pattern. These inhibitory interactions also tend
to conserve the total activity that is stored in STM (Grossberg, 1982), thereby realiz-
ing an interference-based capacity limitation in STM.

Only the F, nodes that win the competition and store their activity in STM can
influence the learning process. STM activity opens alearning gate at the LTM traces
that abut the winning nodes. These LTM traces can then approach, or track, the input
signalsin their pathways, a process called steepest descent. This learning law is thus
often called gated steepest descent, or instar learning. This type of learning tunes the
winning LTM patterns to become even more similar to the STM pattern and to
thereby enable the STM pattern to more effectively activate the corresponding F,
nodes. | introduced this learning law into neural network models in the 1960s (e.g.,
Grossberg, 1969) and into ART models in the 1970s (Grossberg, 1976ab, 1978,
1980). Such an LTM trace can either increase (Hebbian) or decrease (anti-Hebbian)
to track the signalsin its pathway (Table 1). It has been used to model neurophysio-
logical data about learning in the hippocampus (also called long-term potentiation
and long-term depression) and about adaptive tuning of cortical feature detectors
during early visua development (Artola & Singer, 1993; Levy, 1985; Levy & Des
mond, 1985; Rauschecker & Singer, 1979; Singer 1983), thereby lending support to
ART predictions that these systems would employ this type of learning.

Self-organizing feature map models were introduced and computationally charac-
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terized by Christoph von der Masburg and me during the 1970s (Grossberg, 1972,
1976a, 1978; von der Malsburg, 1973; Willshaw & Malsburg, 1976). These models
were subsequently applied and further developed by many authors, notably Teuvo
Kohonen (Kohonen, 1984). They exhibit many useful properties, especially if not
too many input patterns, or clusters of input patterns, perturb level F, relative to the
number of categorizing nodes in level F,. | proved that under these sparse environ-
mental conditions category learning is stablein the sense that itsLTM traces converge
to fixed values as learning trials proceed. In addition, the LTM tracestrack the statis-
tics of the environment, are self-normalizing, and oscillate a minimum number of
times (Grossberg, 1976a). Also, the category selection rule, like a Bayesian classifier,
tends to minimize error. | also proved, however, that under arbitrary environmental
conditions, learning becomes unstable (Grossberg, 1976b). Such amaodel could forget
your parents’ faces when it learns a new face. Although a gradual switching off of
plasticity can partially overcome this problem, such a mechanism cannot work in a
learning system whose plasticity is maintained throughout adulthood.

Thismemory instability isdue to basic properties of associative learning and lateral
inhibition, which are two processes that occur ubiquitously in the brain. An analysis
of this instability, together with data about human and animal categorization, condi-
tioning, and attention, led me to introduce ART models to stabilize the memory of
self-organizing feature maps in response to an arbitrary stream of input patterns.

HOW DOES ART STABILIZE LEARNING OF A SELF-ORGANIZING
FEATURE MAP?

How does an ART model prevent such instabilities from developing? As noted
above, in an ART model, learning does not occur when some winning F, activities
are stored in STM. Instead, activation of F, nodes may be interpreted as ‘* making
a hypothesis”’ about an input at F,. When F, is activated, it quickly generates an
output pattern that is transmitted along the top-down adaptive pathways from F, to
F.. These top-down signals are multiplied in their respective pathwaysby LTM traces
at the semicircular synaptic knobs of Fig. 13B. The LTM-gated signals from all the
active F, nodes are added to generate the total top-down feedback pattern from F,
to Fi. It is this pattern that plays the role of a learned expectation. Activation of
this expectation may be interpreted as ‘‘ testing the hypothesis,”” or *‘reading out the
prototype,’”’ of the active F, category. As shown in Fig. 13B, ART networks are
designed to match the ‘‘expected prototype’’ of the category against the bottom-up
input pattern, or exemplar, to F,. Nodes that are activated by this exemplar are sup-
pressed if they do not correspond to large LTM traces in the top-down prototype
pattern. The resultant F; pattern encodes the cluster of input features that the network
deems relevant to the hypothesis based upon its past experience. This resultant activ-
ity pattern, called X* in Fig. 13B, encodesthe pattern of featuresto which the network
‘‘pays attention.”’

If the expectation is close enough to the input exemplar, then a state of resonance
develops as the attentional focus takes hold. The pattern X* of attended features
reactivates the F, category Y which, in turn, reactivates X*. The network locks into
a resonant state through a positive feedback loop that dynamically links, or binds,
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FIG. 13. ART search for a recognition code: (A) The input pattern | is instated across the feature
detectors at level F; as a short-term memory (STM) activity pattern X. Input | aso nonspecifically
activates the orienting subsystem A; see Fig. 12. STM pattern X is represented by the hatched pattern
across F,. Pattern X both inhibits A and generates the output pattern S. Pattern S is multiplied by long-
term memory (LTM) traces and added at F, nodes to form the input pattern T, which activates the STM
pattern Y across the recognition categories coded at level F,. (B) Pattern Y generates the top-down
output pattern U, which is multiplied by top-down LTM traces and added at F; nodes to form the proto-
type pattern V that encodes the learned expectation of the active F, nodes. If V mismatches | at F;, then
anew STM activity pattern X* is generated at F;. X* is represented by the hatched pattern. It includes
the features of | that are confirmed by V. Inactivated nodes corresponding to unconfirmed features of
X are unhatched. The reduction in total STM activity which occurs when X is transformed into X*
causes a decrease in the total inhibition from F; to A. (C) If inhibition decreases sufficiently, A releases
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TABLE 1
The Instar Learning, or Gated Steepest Descent
Learning Rule, Embodies both Hebbian (LTP)
and anti-Hebbian (LTD) Properties within a Single

Process?
S WX
Casel Case2 Case3 Case4
State of § —+ - + —
State of x; + + - -
State of w;; 1 ! o -
Note. Symbols: + = active; — = inactive; 1 =

increase; | = decrease; —~ = no change.
2 Reprinted with permission from Grossberg and
Merrill (1996).

X* with Y. The resonance binds spatially distributed features into either a stable
equilibrium or a synchronous oscillation, much like the synchronous feature binding
in visual cortex that has recently attracted so much interest after the experiments of
Reinhard Eckhorn and Wolf Singer and their colleagues (Eckhorn et al., 1988;
Gray & Singer, 1989); also see Grossherg and Grunewald (1997).

In ART, the resonant state, rather than bottom-up activation, is predicted to drive
thelearning process. The resonant state persistslong enough, at ahigh enough activity
level, to activate the slower learning processes in the LTM traces. This helps to ex-
plain how the LTM traces can regulate the brain’ sfast information processing without
necessarily learning about the signals that they process. Through resonance as a medi-
ating event, the combination of top-down matching and attentional focusing helps
to stabilize ART learning and memory in response to an arbitrary input environment.
The stabilizing properties of top-down matching may be one reason for the ubiquitous
occurrence of reciprocal bottom-up and top-down corticocortical and corticothalamic
interactions in the brain.

HOW IS THE GENERALITY OF KNOWLEDGE CONTROLLED?

A key problem about consciousness concerns what combinations of features or
other information are bound together into object or event representations. ART pro-
vides anew answer to this question that overcomes problemsfaced by earlier models.
In particular, ART systems learn prototypes, rather than exemplars, because the at-

a nonspecific arousal wave to F,, which resets the STM pattern Y at F,. (D) After Y is inhibited, its
top-down prototype signdl is eliminated, and X can be reinstated at F,. Enduring traces of the prior reset
lead X to activate adifferent STM pattern Y* at F,. If the top-down prototype dueto Y* also mismatches
| a F,, then the search for an appropriate F, code continues until a more appropriate F, representation
is selected. Then an attentive resonance develops and learning of the attended dataisinitiated. [Reprinted
with permission from Grossberg and Merrill (1996).]
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tended feature vector X*, rather than the input exemplar itself, is learned. Both the
bottom-up LTM traces that tune the category nodes and the top-down LTM traces
that filter the learned expectation learn to correlate activation of F, nodes with the
set of al attended X* vectors that they have ever experienced. These attended STM
vectors assign less STM activity to features in the input vector | that mismatch the
learned top-down prototype V than to features that match V.

Given that ART systems learn prototypes, how can they also learn to recognize
unique experiences, such as a particular view of a friend’'s face? The prototypes
learned by ART systems accomplish this by realizing aqualitatively different concept
of prototype than that offered by previous models. In particular, Gail Carpenter and
| have shown with our students how ART prototypes form in away that is designed
to conjointly maximize category generalization while minimizing predictive error
(Bradski & Grossberg, 1995; Carpenter & Grossberg, 1987ab; Carpenter,
Grossberg, & Reynolds, 1991; Carpenter, Grossberg, Markuzon, Reynolds, & Rosen,
1992). As a result, ART prototypes can automatically learn individual exemplars
when environmental conditions require highly selective discriminations to be made.
How the matching process achieves this is discussed below.

Before describing how this is achieved, let us note what happens if the mismatch
between bottom-up and top-down information istoo great for a resonance to develop.
Then the F, category is quickly reset and a memory search for a better category is
initiated. This combination of top-down matching, attention focusing, and memory
search iswhat stabilizes ART learning and memory in an arbitrary input environment.
The attentional focusing by top-down matching prevents inputs that represent irrele-
vant features at F, from eroding the memory of previously learned LTM prototypes.
In addition, the memory search resets F, categories so quickly when their prototype
V mismatches the input vector | that the more slowly varying LTM traces do not
have an opportunity to correlate the attended F, activity vector X* with them. Con-
versely, the resonant event, when it does occur, maintains and amplifies the matched
STM activities for long enough and at high enough amplitudes for learning to occur
inthe LTM traces.

Whether a resonance occurs depends upon the level of mismatch, or novelty, that
the network is prepared to tolerate. Novelty is measured by how well a given exem-
plar matches the prototype that its presentation evokes. The criterion of an acceptable
match is defined by an internally controlled parameter that Carpenter and | have called
vigilance (Carpenter & Grossberg, 19874d). The vigilance parameter is computed in
the orienting subsystem A; see Fig. 12. Vigilance weighs how similar an input exem-
plar | must be to atop-down prototype V in order for resonance to occur. Resonance
occursif p|l| — [X*| = 0. Thisinequality saysthat the F, attentional focus X* inhibits
A more than the input | excites it. If A remains quiet, then an F, - F, resonance
can develop.

Either alarger value of p or asmaller match ratio |X*|I|™* makesit harder to satisfy
the resonance inequality. When p grows so large or [X*|I|* is so small that pll| —
[X*| > 0, then A generates an arousal burst, or novelty wave, that resets the STM
pattern across F, and initiates about of hypothesistesting, or memory search. During
search, the orienting subsystem interacts with the attentional subsystem (Figs. 13C
and 13D) to rapidly reset mismatched categoriesand to select better F, representations
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with which to categorize novel events at F;, without risking unselective forgetting
of previous knowledge. Search may select afamiliar category if its prototypeis simi-
lar enough to the input to satisfy the resonance criterion. The prototype may then be
refined by attentional focusing. If the input is too different from any previously
learned prototype, then an uncommitted popul ation of F, cellsis selected and learning
of anew category is initiated.

Because vigilance can vary across learning trials, recognition categories capable
of encoding widely differing degrees of generalization or abstraction can be learned
by a single ART system. Low vigilance leads to broad generalization and abstract
prototypes. High vigilance leadsto narrow generalization and to prototypesthat repre-
sent fewer input exemplars, even asingle exemplar. Thus asingle ART system may
be used, say, to learn abstract prototypes with which to recognize abstract categories
of facesand dogs, aswell as*‘ exemplar prototypes’ with which to recognize individ-
ual faces and dogs. A single system can learn both, as the need arises, by increasing
vigilance just enough to activate A if a previous categorization leads to a predictive
error. Thus the contents of a conscious percept can be modified by environmentally
sensitive vigilance control.

Vigilance control hereby allows ART to overcome some fundamental difficulties
that have been faced by classica exemplar and prototype theories of learning and
recognition. Classical exemplar models face a serious combinatorial explosion, since
they need to suppose that all experienced exemplars are somehow stored in memory
and searched during performance. Classical prototype theories face the problem that
they find it hard to explain how individual exemplars are learned, such as a particular
view of a familiar face. Vigilance control enables ART to achieve the best of both
types of model, by selecting the most general category that is consistent with environ-
mental feedback. If that category is an exemplar, then a‘‘very vigilant’”” ART model
can learn it. If the category is at an intermediate level of generalization, then the
ART model canlearnit by having the vigilance value track the level of match between
the current exemplar and the prototype that it activates. In every instance, the model
triesto learn the most general category that is consistent with the data. This tendency
can, for example, lead to the type of overgeneralization that is seen in young children
until further learning leads to category refinement (Chapman et al., 1986; Clark,
1973; Smith et al., 1985; Smith & Kemler, 1978; Ward, 1983). Many benchmark
studies of how ART uses vigilance control to classify complex data bases have shown
that the number of ART categories that is learned scales well with the complexity of
the input data; see Carpenter and Grossberg (1994) for alist of illustrative benchmark
studies.

CORTICOHIPPOCAMPAL INTERACTIONS AND MEDIAL
TEMPORAL AMNESIA

As sequences of inputs are practiced over learning trials, the search process eventu-
aly converges upon stable categories. Carpenter and | mathematically proved (Car-
penter and Grossberg, 1987a) that familiar inputs directly access the category whose
prototype providesthe globally best match, while unfamiliar inputs engage the orient-
ing subsystem to trigger memory searches for better categories until they become
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familiar. This process continues until the memory capacity, which can be chosen
arbitrarily large, isfully utilized. The process whereby search is automatically disen-
gaged is a form of memory consolidation that emerges from network interactions.
Emergent consolidation does not preclude structural consolidation at individual cells,
sincethe amplified and prolonged activitiesthat subserve aresonance may be atrigger
for learning-dependent cellular processes, such as protein synthesis and transmitter
production. It has aso been shown that the adaptive weights which are learned by
an ART model at any stage of learning can be trandated into IF-THEN rules (e.g.,
Carpenter et al., 1992). Thus the ART model is a self-organizing rule-discovering
production system as well as a neural network.

The attentional subsystem of ART has been used to model aspects of inferotem-
pora (IT) cortex, and the orienting subsystem models part of the hippocampal system.
The interpretation of ART dynamics in terms of IT cortex led Miller, Li, and Desi-
mone (1991) to successfully test the prediction that cells in monkey IT cortex are
reset after each trial in a working memory task. To illustrate the implications of an
ART interpretation of 1T—hippocampal interactions, | review how a lesion of the
ART model’s orienting subsystem creates aformal memory disorder with symptoms
much like the medial temporal amnesia that is caused in animals and human patients
after hippocampal system lesions (Carpenter & Grossberg, 1993; Grossberg & Mer-
rill, 1996). In particular, such alesion in vivo causes unlimited anterograde amnesia;
limited retrograde amnesia; failure of consolidation; tendency to learn the first event
in a series; abnormal reactions to novelty, including perseverative reactions, normal
priming; and normal information processing of familiar events (Cohen, 1984; Graf,
Squire, & Mandler, 1984; Lynch, McGaugh, & Weinberger, 1984; Squire & Buitters,
1984; Squire & Cohen, 1984; Warrington & Weiskrantz, 1974; Zola-Morgan &
Squire, 1990).

Unlimited anterograde amnesia occurs because the network cannot carry out the
memory search to learn a new recognition code. Limited retrograde amnesia occurs
because familiar events can directly access correct recognition codes. Before events
becomefamiliar, memory consolidation occurs which utilizesthe orienting subsystem
(Figure 13C). Thisfailure of consolidation does not necessarily prevent learning per
se. Instead, learning influences the first recognition category activated by bottom-up
processing, much as amnesics are particularly strongly wedded to the first response
they learn. Perseverative reactions can occur because the orienting subsystem cannot
reset sensory representations or top-down expectations that may be persistently mis-
matched by bottom-up cues. The inability to search memory prevents ART from
discovering more appropriate stimulus combinations to attend. Normal priming oc-
curs because it is mediated by the attentional subsystem.

Similar behavioral problems have been identified in hippocampectomized mon-
keys. Gaffan (1985) noted that fornix transection ‘‘impairs ability to change an estab-
lished habit . . . in a different set of circumstances that is similar to the first and
therefore liable to be confused with it.”’ In ART, a defective orienting subsystem
prevents the memory search whereby different representations could be learned for
similar events. Pribram (1986) called such a process a“‘ competence for recombinant
context-sensitive processing.’”’ These ART mechanisms illustrate how, as Zola-
Morgan and Squire (1990) have reported, memory consolidation and novelty detec-
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tion may be mediated by the same neural structures. Why hippocampectomized rats
have difficulty orienting to novel cues and why there is a progressive reduction in
novelty-related hippocampal potentials as learning proceeds in normal rats is also
clarified (Deadwyler, West, & Lunch, 1979; Deadwyler, West, & Robinson, 1981).
In ART, the orienting system is automatically disengaged as events become familiar
during the memory consolidation process. The ART model of normal and abnormal
recognition learning and memory is compared with severa other recent models of
these phenomena in Grossberg and Merrill (1996).

At this point, it might also be useful to note that the processes of automatic and
task-sel ective attention may not be independent in vivo. Thisis because higher-order
attentional constraintsthat may be under task-sel ective control canin principle propa-
gate downward through successive cortical levels vialayer-6-to-layer-6 linkages. For
example, recent modeling work has suggested how prestriate cortical areas may sepa-
rate visual objects from one another and from their backgrounds during the process
of figure—ground separation (Grossberg, 1994, 1997; Grossberg & McLoughlin,
1997). Such constraints may propagate top-down toward earlier cortical levels, possi-
bly even area V1, to modulate the cells that get active there to be consistent with
these figure—ground constraints. Still higher cortical processes, such asthoseinvolved
in learned categorization, may also propagate their modulatory constraints to lower
levels. How the strength of such top-down modulatory influences depends upon the
source cortical area and on the number of synaptic steps to the target cortical area
is atopic that has yet to be systematically studied.

HOW UNIVERSAL ARE ART PROCESSES IN THE BRAIN?

In all the examples discussed above—from early vision, visual object recognition,
auditory streaming, and speech recognition—ART matching and resonance have
played acentral rolein modelsthat help to explain how the brain stabilizesits |earned
adaptations in response to changing environmental conditions. This type of matching
can be achieved using a top-down nonspecific inhibitory gain control that down-
regulates all target cells except those that also receive top-down specific excitatory
signals, asin Fig. 8. Arethere yet other brain processes that utilize these mechanisms?

John Reynolds and colleagues in Bob Desimone’ s laboratory (Reynolds, Nicholas,
Chelazzi, & Desimone, 1995) have reported neurophysiological data from cells in
cortical areas V2 and V4 that are consistent with the ART attentional mechanism
summarized in Fig. 8. Taken together with studies of the V1 — LGN attention circuit
and of attentional control by frontal and inferotemporal cortex during visual object
recognition, it may be concluded that ART-like top-down matching occurs through-
out the brain’s visual system.

With my colleagues Mario Aguilar, Dan Bullock, and Karen Roberts, a neural
model has been devel oped to explain how the superior colliculus learnsto use visual,
auditory, somatosensory, and planned movement signals to control saccadic eye
movements (Grossberg, Roberts, Aguilar, & Bullock, 1997). This model uses ART
matching and resonance to help explain behaviora and neural data about multimodal
eye movement control. The model clarifies how visual, auditory, and planned move-
ment signals use learning to form a mutually consistent movement map and how
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attention gets focused on a movement target location after all these signals compete
to determine where the eyes will move.

Recent experiments from Marcus Raichle's lab at Washington University using
positron emission tomography (PET) support the idea that ART top-down priming
also occurs in human somatosensory cortex (Drevets, Burton, & Raichle, 1995). In
their experiments, attending to an impending stimulus to the fingers caused inhibition
of nearly cortical cells that code for the face, but not cells that code the fingers.
Likewise, priming of the toes produced inhibition of nearby cells that code for the
fingers and face, but not cells that code for the toes.

ART models have also been used to explain a great deal of data about cognitive—
emotional interactions, notably about classical and instrumental conditioning
(Grossberg, 1987b) and about human decision making under risk (Grossberg and
Gutowski, 1987). In these examples, the resonances are between cognitive and emo-
tional circuits and help to focus attention upon, and release actions toward, valued
events in the world.

Thus &l levels of vision, visual object recognition, auditory streaming, speech
recognition, attentive selection of eye movement targets, somatosensory representa-
tion, and cognitive—emotional interactions may all incorporate variants of the circuit
depicted in Fig. 8. These results suggest that atype of ‘*automatic’’ attention operates
even at early levels of brain processing, such asthe lateral geniculate, but that higher
processing levels benefit from an orienting subsystem that can be used to flexibly
reset attention and to facilitate voluntary control of top-down expectations.

INTERNAL FANTASY, PLANNED MOVEMENT, AND VOLITIONAL GATING

Given thistype of circuit, how could top-down priming be released from inhibition
to enable us to voluntarily experience interna thinking and fantasies? This can be
achieved through an ‘*act of will’’ that activates inhibitory cells which inhibit the
nonspecific inhibitory interneurons in the top-down on-center off-surround network
of Fig. 8. Thisoperation disinhibitsthe cellsreceiving the excitatory top-down signals
in the on-center of the network. These cells are then free to generate supraliminal
resonances. Such self-initiated resonances can, for example, be initiated by the read-
out of top-down expectations from higher-order planning nodes into temporally orga-
nized working memories, say in the prefrontal cortex (Fuster, 1996). It is, for exam-
ple, well known that the basal ganglia can use such a disinhibitory action to gate
the release of individual movements, sequences of movements, and even cognitive
processes (Hikosaka, 1994; Middleton & Strick, 1994; Sakai et al., 1998).

These examples aso help to understand how top-down expectations can be used
for the control of planned (viz., intentional) behavioral sequences. For example, once
such planning nodes read-out their top-down expectations into working memory, the
contents of working memory can be read-out and modified by on-line changes in
“*acts of will.”” These valitional signals enable invariant representations of an inten-
tional behavior to rapidly adapt themselves to changing environmental conditions.
For example, Bullock, Grossberg, and Mannes (1993) have modeled how such a
working memory can control the intentional performance of handwriting whose size
and speed can be modified by acts of will, without a change of handwritten form.
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Bullock, Grossberg, and Guenther (1994) have shown how a visua target that is
stored in working memory can be reached with anovel tool that has never been used
before. The latter study shows how a such a model can learn its own parameters
through a type of Piagetian perform-and-test developmental cycle.

Thus we arrive at an emerging picture of how the adaptive brain works wherein
the core issue of how a brain can learn quickly and stably about a changing world
throughout life leads toward a mechanistic understanding of attention, intention,
thinking, fantasy, and consciousness. The mediating events are adaptive resonances
that effect a dynamic balance between the complementary demands of stability and
plasticity and of expectation and novelty and which are a necessary condition for
CONSCiousness.

WHAT VS WHERE: WHY ARE PROCEDURAL
MEMORIES UNCONSCIOUS?

Although the type of ART matching, learning, and resonance that have been re-
viewed above seem to occur in many sensory and cognitive processes, they are not
the only types of matching and learning to occur in the brain. In fact, there seems
to be a mgjor difference between the types of learning that occur in sensory and
cognitive processes versus those that occur in spatial and motor processes. In particu-
lar, sensory and cognitive processes are carried out in the What processing stream
that passes through the inferotemporal cortex, whereas spatial and motor processes
are carried out in the Where processing stream that passes through the parietal cortex.
What processing includes object recognition and event prediction. Where processing
includes spatia navigation and motor control. | suggest that the types of matching
and learning that go on in the What and Where streams are different, indeed comple-
mentary, and that this difference is appropriate to their different roles. First, consider
how we use a sensory expectation. Suppose, for example, that | ask you to ‘‘Look
for the yellow ball, and if you find it within three hundred milliseconds, | will give
you amillion dollars.”” If you believed me, you could activate a sensory expectation
of “‘yellow balls’ that would make you much more sensitive to yellow and round
objects in your environment. Asin ART matching, once you detected a yellow ball,
you could then react to it much more quickly and with a much more energetic re-
sponse than if you were not looking for it. In other words, sensory and cognitive
expectations lead to a type of excitatory matching.

Now consider how we use a motor expectation. Such an expectation represents
wherewe want to move (Bullock & Grossberg, 1988). For example, it could represent
a desired position for the hand to pick up an object. Such a motor expectation is
matched against where the hand is now. After the hand actually moves to the desired
position, no further movement is required to satisfy the motor expectation. In this
sense, motor expectationslead to atype of inhibitory matching. In summary, although
the sensory and cognitive matching processis excitatory, the spatial and motor match-
ing process is inhibitory. These are complementary properties. Models such as ART
quantify how excitatory matching is accomplished. A different type of model, called
a Vector Associative Map, or VAM, model, suggests how inhibitory matching is
accomplished (Gaudiano & Grossberg, 1991; Grossberg, Guenther, Bullock, &
Greve, 1993; Guenther, Bullock, Greve, & Grossberg, 1994).
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Asshown in the discussions of ART above, learning within the sensory and cogni-
tive domain is often a type of match learning. It takes place only if there is a good
enough match of top-down expectations with bottom-up data to risk altering previ-
ously stored knowledge within the system, or it can trigger learning of anew represen-
tation if a good enough match is not available. In contrast, learning within spatial
and motor processes, such as VAM processes, is mismatch learning that is used to
either learn new sensory-motor maps (e.g., Grossberg, Guenther, Bullock, & Greve,
1993) or to adjust the gains of sensory-motor commands (e.g., Fiala, Grossberg, &
Bullock, 1996). These types of learning are also complementary.

Why are the types of learning that go into spatial and motor processes complemen-
tary to those that are used for sensory and cognitive processing? My answer is that
ART-like learning allows the brain to solve the stability—plasticity dilemma. It en-
ables us to continue learning more about the world in a stable fashion throughout
life without forcing catastrophic forgetting of our previous memories. On the other
hand, catastrophic forgetting is a good property when it takes place during spatia
and motor learning. We have no need to remember all the spatial and motor maps
that we used when we were infants or children. In fact, those maps would cause us
alot of trouble if they were used to control our adult [imbs. We want our spatial and
motor processes to continuously adapt to changes in our motor apparatus. These
complementary types of learning allow our sensory and cognitive systems to stably
learn about the world and to thereby be able to effectively control spatial and motor
processes that continually update themselves to deal with changing conditions in our
limbs.

Why, then, are procedural memories unconscious? The difference between cogni-
tive memories and procedural, or motor, memories has gone by a number of different
names, including the distinction between declarative memory and procedural mem-
ory, knowing that and knowing how, memory and habit, or memory with record and
memory without record (Bruner, 1969; Miskin, 1982, 1993; Ryle, 1949; Squire &
Cohen, 1984). The amnesic patient HM dramatically illustrated this distinction by
learning and remembering motor skills like assembly of the Tower of Hanoi without
being able to recall ever having done so (Bruner, 1969; Scoville & Milner, 1957,
Squire & Cohen, 1984). We can now give a very short answer to the question of
why procedural memories are unconscious: The matching that takes place during
spatial and motor processing is often inhibitory matching. Such a matching process
cannot support an excitatory resonance. Hence, it cannot support consciousness.

In this regard, Goodale and Milner (1992) have described a patient whose brain
lesion has prevented accurate visua discrimination of object orientation, yet whose
visually guided reaching behaviors toward objects are oriented and sized correctly.
We have shown, in a series of articles, how head-centered and body-centered repre-
sentations of an object’s spatial location and orientation may be learned and used to
control reaches of the hand—arm system that can continuously adapt to changes in
the sensory and motor apparatus that is used to plan and execute reaching behaviors
(Bullock, Grossberg, & Guenther, 1993; Carpenter, Grossberg, & Lesher, 1998; Gau-
diano & Grossberg, 1991; Grossberg, Guenther, Bullock, & Greve, 1993; Guenther,
Bullock, Greve, & Grossberg, 1994). None of these model circuits has resonant oops;
hence, they do not support consciousness.
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When these models are combined into a more comprehensive system architecture
for intelligent behavior, the sensory and cognitive match-based networksin the What
processing stream through the inferotemporal cortex provide self-stabilizing repre-
sentations with which to continually learn more about the world without undergoing
catastrophic forgetting, while the Where/How processing stream’s spatial and motor
mismatch-based maps and gains can continually forget their old parameters in order
to instate the new parameters that are needed to control our bodies in their present
form. This larger architecture illustrates how circuits in the self-stabilizing match-
based sensory and cognitive parts of the brain can resonate into consciousness, even
while they are helping to direct the contextually appropriate activation of spatial and
motor circuits that cannot.

SOME COMMENTS ABOUT AMODAL AND MODAL VISUAL PERCEPTS

There are many other aspects of perception and cognition, notably of vision and
visual object recognition, which can be discussed in the light of recent modeling
advances to shed light on consciousness. Here | make some summarizing remarks
whose detailed analysis and justification can be found in the original articles. One
issue of interest concerns the distinction between modal and amodal percepts. An
amodal percept, such as the percept of a vertical boundary between the offset grating
in Fig. 1C, is one which does not carry a visible perceptual sign. As noted above,
it can be recognized without being seen; we are conscious of it even though it is
perceptually invisible. A modal percept, such as a percept of brightness or color,
does carry avisible perceptual sign. | believe that al theories of consciousness need
to deal with how amodal percepts can occur because such percepts sharply distinguish
between our consciously ‘‘knowing'’ that an event has occurred even though we do
not consciously ‘‘perceive’’ it.

The FACADE theory of biologica vision has provided an extensive analysis of
some of the conditions that determine whether a percept will be modal or amodal
(e.g., Francis, Grossberg, & Mingolla, 1994; Grossberg, 1994, 1997; Grossberg &
McLoughlin, 1997; Grossberg & Mingolla, 1985b; Gove, Grosshberg, & Mingolla,
1995). A key contribution of thistheory isto suggest how visual scenes are processed
in parallel by cortical boundary and surface systems, which are proposed to be real-
ized by the interblob and blob processing streams from the LGN to cortical area V4.
Boundaries include illusory contours (Fig. 1), as well as the boundaries that are
formed in response to texture, shading, and stereo cues.

A key insight of this theory is that ‘‘all boundaries are invisible’’ (i.e., amodal)
within the boundary processing stream, and that visibility is a property of the surface
processing stream. Boundaries are invisible within the boundary processing stream
because like-oriented signals from cortical simple cells that are sensitive to opposite
contrast polarities are pooled at complex cells. Complex cells can hereby respond to
contrasts that are either dark/light or light/dark, as can all subsequent stages of the
boundary system. As a result of this pooling process, a boundary can be formed
around an object whose relative contrasts with respect to its background may reverse
aong its perimeter. A secondary consequence is that a perceptual boundary, by pool-
ing across opposite contrast polarities (as well as al opponent colors), cannot repre-
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sent any visible property that depends upon knowing the direction of a brightness
or color change.

Modal percepts are predicted to occur within the surface processing stream. Sur-
face representations arise through interactions with the boundaries. First, the surface
stream ‘‘ discounts the illuminant,”” or compensates for variable illumination (Helm-
holtz, 1962; Land, 1977, 1986). This discounting process eliminates brightness or
color signals within homogeneously bright or colored regions of a scene, which could
otherwise cause serious confusions between variable lighting conditions and the sur-
face properties of objects in the world. At subsegquent processing stages, the bound-
aries interact with the discounted surface signals. Here, the boundaries suppress sur-
face signals that are not spatialy coincident with them. Boundaries select surface
signals that are spatially coincident with them and initiate a process of filling-in
whereby these selected signals can diffuse within the controlling boundaries.

FACADE theory predicts that the boundaries which exercise this control occur
subsequent to the cortical processing stage at which visual inputs from both eyes are
binocularly fused. It was suggested in Grossberg (19874) that, although the binocular
matching process is initiated in cortical area V1, the stage at which the binocular
boundaries are completed occurs no earlier than cortical area V2.

During binocular rivalry, the inputs to the two eyes are mismatched in such a
way that image regions from only one eye at a time can be consciously perceived.
FACADE theory suggests how boundary signals from the two eyes compete in a
cyclical fashion through time, with the boundaries from one eye winning at any time
in each position. Such competition has been traced to the mechanisms whereby a
winning boundary is selected from among many possible boundary groupings, even
when the inputs to both eyes represent the same scene. The cyclicity of the percept
was traced to the habituative mechanisms whereby boundaries are rapidly reset in
response to rapidly changing imagery in order to prevent them from persisting too
long [see Francis, Grossberg, & Mingolla (1994) for an analysis of how long percep-
tual boundaries do persist]. Then the winning boundaries select those surface signals
from the dominant eye which are spatially coincident with them while suppressing
the spatialy discordant surface signals from the losing eye. The first stage of such
surface capture selects the surface properties from each eye separately. The selected
surface representations are predicted to be amodal. These selected surface properties
are then binocularly matched at a subsequent processing stage at which the modal,
or visible, surface representation is predicted to form. This is aso the processing
stage at which visual figures are fully separated from one another and from their
backgrounds.

Grossberg (1987a) predicted that this binocular modal, or visible, representation
of the winning surface percept arisesin cortical area V4, which resonates with infero-
temporal cortex during consciousness. Logothetis et al. (1996) have reported consis-
tent data on binocular rivalry from awake behaving monkeys. Schiller (1994) has
reported data from awake behaving monkeys that is consistent with the prediction
that figure—ground separation is completed in cortical area V4.

These results support the FACADE theory prediction that amodal percepts may
form in cortical areas V2 or before and that modal representations of surfaces may
first occur in cortical area V4. In further support of this hypothesis, Grossberg (1994)
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explained many data about 3D figure—ground separation in which, say, amodal repre-
sentations of occluded object parts may be formed in cortical area V2 and used to
recognize these occluded objects, even though they are not seen. Modal representa
tions of both occluding objects and the unoccluded parts of the objects that they
occlude may not be formed until cortical area V4. This is proposed despite the fact
that all of these cortical processing stages may incorporate the ART matching rule
within their laminar circuits and may resonate using both the intercortical and intra-
cortical feedback pathways that activate the layer-6-to-layer-4 on-center off-surround
networks, the former during attentional priming and the latter during the selection
of winning perceptual groupings.

Grossberg (1997) proposed that the modally conscious surface representations in
V4 may be used to recognize and to control reaching toward physically accessible
objects, especially in infants, whereas the amodally conscious representations—both
of boundaries and of surfaces—in V2 may be used to recognize partially occluded
objects and to reach toward them via more indirect motor planning and control cir-
cuits. This proposal provides a functional reason for making some visual representa-
tions visible and others not visible; in particular, being able to distinguish between
modal (e.g., occluding) and amodal (e.g., occluded) representations helps to prevent
efforts to reach through an occluding object to the object that it is occluding. On the
other hand, the proposal does not explain how the property of visibility is achieved
by one type of representation but not the other, particularly since both types of repre-
sentation may be assumed to be resonant. Thisfact does not contradict the hypothesis
that al conscious states are resonant states. It does show, however, that further mech-
anisms are needed to explain why some of these resonant representations are modal
whereas others are merely amodal.

The need for further mechanisms is well-illustrated by the following modeling
prediction. It was predicted in Grossberg (1987a), and then used extensively to ex-
plain much more perceptual datain Grossberg (1994, 1997), that anetwork of double-
opponent cells forms an important mechanism in the process whereby boundaries
select only those surface brightness and color signals that are spatially coincident
with them. Double-opponent cells are often cited as akey mechanism of color percep-
tion (e.g., Livingstone & Hubel, 1984). FACADE theory suggests that such networks
are used to form both amodal and modal surface representations. In the amodal sur-
face representations, double-opponent networks are predicted not to generate a per-
cept of visible color. Some other factor must be sought, to whose discovery future
research would be profitably directed.
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